Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):3031–3040. doi: 10.1016/S0006-3495(98)77744-6

Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle.

Z H He 1, M A Ferenczi 1, M Brune 1, D R Trentham 1, M R Webb 1, A P Somlyo 1, A V Somlyo 1
PMCID: PMC1299974  PMID: 9826623

Abstract

The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis.

Full Text

The Full Text of this article is available as a PDF (163.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arner A., Hellstrand P. Activation of contraction and ATPase activity in intact and chemically skinned smooth muscle of rat portal vein. Dependence on Ca++ and muscle length. Circ Res. 1983 Nov;53(5):695–702. doi: 10.1161/01.res.53.5.695. [DOI] [PubMed] [Google Scholar]
  2. Ashton F. T., Somlyo A. V., Somlyo A. P. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J Mol Biol. 1975 Oct 15;98(1):17–29. doi: 10.1016/s0022-2836(75)80098-2. [DOI] [PubMed] [Google Scholar]
  3. Brune M., Hunter J. L., Corrie J. E., Webb M. R. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry. 1994 Jul 12;33(27):8262–8271. doi: 10.1021/bi00193a013. [DOI] [PubMed] [Google Scholar]
  4. Brune M., Hunter J. L., Howell S. A., Martin S. R., Hazlett T. L., Corrie J. E., Webb M. R. Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry. 1998 Jul 21;37(29):10370–10380. doi: 10.1021/bi9804277. [DOI] [PubMed] [Google Scholar]
  5. Butler T. M., Siegman M. J., Mooers S. U. Slowing of cross-bridge cycling in smooth muscle without evidence of an internal load. Am J Physiol. 1986 Dec;251(6 Pt 1):C945–C950. doi: 10.1152/ajpcell.1986.251.6.C945. [DOI] [PubMed] [Google Scholar]
  6. Cassidy P., Hoar P. E., Kerrick W. G. Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATP gamma S. J Biol Chem. 1979 Nov 10;254(21):11148–11153. [PubMed] [Google Scholar]
  7. Dash P. K., Hackney D. D. The mechanism of ATP hydrolysis by smooth muscle myosin and subfragments using steady state titration and 18O exchange. Biochem Int. 1991 Dec;25(6):1013–1022. [PubMed] [Google Scholar]
  8. Driska S. P., Stein P. G., Porter R. Myosin dephosphorylation during rapid relaxation of hog carotid artery smooth muscle. Am J Physiol. 1989 Feb;256(2 Pt 1):C315–C321. doi: 10.1152/ajpcell.1989.256.2.C315. [DOI] [PubMed] [Google Scholar]
  9. Ellis-Davies G. C., Kaplan J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):187–191. doi: 10.1073/pnas.91.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferenczi M. A., He Z. H., Chillingworth R. K., Brune M., Corrie J. E., Trentham D. R., Webb M. R. A new method for the time-resolved measurement of phosphate release in permeabilized muscle fibers. Biophys J. 1995 Apr;68(4 Suppl):191S–193S. [PMC free article] [PubMed] [Google Scholar]
  11. Fuglsang A., Khromov A., Török K., Somlyo A. V., Somlyo A. P. Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil. 1993 Dec;14(6):666–677. doi: 10.1007/BF00141563. [DOI] [PubMed] [Google Scholar]
  12. Goldman Y. E., Simmons R. M. Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J Physiol. 1984 May;350:497–518. doi: 10.1113/jphysiol.1984.sp015215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gong M. C., Cohen P., Kitazawa T., Ikebe M., Masuo M., Somlyo A. P., Somlyo A. V. Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem. 1992 Jul 25;267(21):14662–14668. [PubMed] [Google Scholar]
  14. He Z. H., Chillingworth R. K., Brune M., Corrie J. E., Trentham D. R., Webb M. R., Ferenczi M. A. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. J Physiol. 1997 May 15;501(Pt 1):125–148. doi: 10.1111/j.1469-7793.1997.125bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Himpens B., Matthijs G., Somlyo A. V., Butler T. M., Somlyo A. P. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol. 1988 Dec;92(6):713–729. doi: 10.1085/jgp.92.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horiuti K., Somlyo A. V., Goldman Y. E., Somlyo A. P. Kinetics of contraction initiated by flash photolysis of caged adenosine triphosphate in tonic and phasic smooth muscles. J Gen Physiol. 1989 Oct;94(4):769–781. doi: 10.1085/jgp.94.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kamm K. E., Stull J. T. Activation of smooth muscle contraction: relation between myosin phosphorylation and stiffness. Science. 1986 Apr 4;232(4746):80–82. doi: 10.1126/science.3754063. [DOI] [PubMed] [Google Scholar]
  18. Kenney R. E., Hoar P. E., Kerrick W. G. The relationship between ATPase activity, isometric force, and myosin light-chain phosphorylation and thiophosphorylation in skinned smooth muscle fiber bundles from chicken gizzard. J Biol Chem. 1990 May 25;265(15):8642–8649. [PubMed] [Google Scholar]
  19. Khromov A., Somlyo A. V., Trentham D. R., Zimmermann B., Somlyo A. P. The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys J. 1995 Dec;69(6):2611–2622. doi: 10.1016/S0006-3495(95)80132-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
  21. Lionne C., Brune M., Webb M. R., Travers F., Barman T. Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases. FEBS Lett. 1995 May 1;364(1):59–62. doi: 10.1016/0014-5793(95)00356-e. [DOI] [PubMed] [Google Scholar]
  22. Lönnbro P., Hellstrand P. Heat production in chemically skinned smooth muscle of guinea-pig taenia coli. J Physiol. 1991;440:385–402. doi: 10.1113/jphysiol.1991.sp018714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moss R. L. Force generation in muscle: time-resolved measurements of ATPase activity using a phosphate-sensitive fluorophore. J Physiol. 1997 May 15;501(Pt 1):1–1. doi: 10.1111/j.1469-7793.1997.001bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishiye E., Somlyo A. V., Török K., Somlyo A. P. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol. 1993 Jan;460:247–271. doi: 10.1113/jphysiol.1993.sp019470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Osterman A., Arner A. Effects of inorganic phosphate on cross-bridge kinetics at different activation levels in skinned guinea-pig smooth muscle. J Physiol. 1995 Apr 15;484(Pt 2):369–383. doi: 10.1113/jphysiol.1995.sp020671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paul R. J. Smooth muscle energetics. Annu Rev Physiol. 1989;51:331–349. doi: 10.1146/annurev.ph.51.030189.001555. [DOI] [PubMed] [Google Scholar]
  27. Rapp G., Güth K. A low cost high intensity flash device for photolysis experiments. Pflugers Arch. 1988 Feb;411(2):200–203. doi: 10.1007/BF00582315. [DOI] [PubMed] [Google Scholar]
  28. Sellers J. R. Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin. J Biol Chem. 1985 Dec 15;260(29):15815–15819. [PubMed] [Google Scholar]
  29. Siegman M. J., Butler T. M., Mooers S. U., Davies R. E. Chemical energetics of force development, force maintenance, and relaxation in mammalian smooth muscle. J Gen Physiol. 1980 Nov;76(5):609–629. doi: 10.1085/jgp.76.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  31. Somlyo A. V., Goldman Y. E., Fujimori T., Bond M., Trentham D. R., Somlyo A. P. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol. 1988 Feb;91(2):165–192. doi: 10.1085/jgp.91.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trinkle-Mulcahy L., Siegman M. J., Butler T. M. Metabolic characteristics of alpha-toxin-permeabilized smooth muscle. Am J Physiol. 1994 Jun;266(6 Pt 1):C1673–C1683. doi: 10.1152/ajpcell.1994.266.6.C1673. [DOI] [PubMed] [Google Scholar]
  33. Trybus K. M. Filamentous smooth muscle myosin is regulated by phosphorylation. J Cell Biol. 1989 Dec;109(6 Pt 1):2887–2894. doi: 10.1083/jcb.109.6.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vyas T. B., Mooers S. U., Narayan S. R., Siegman M. J., Butler T. M. Cross-bridge cycling at rest and during activation. Turnover of myosin-bound ADP in permeabilized smooth muscle. J Biol Chem. 1994 Mar 11;269(10):7316–7322. [PubMed] [Google Scholar]
  35. Vyas T. B., Mooers S. U., Narayan S. R., Witherell J. C., Siegman M. J., Butler T. M. Cooperative activation of myosin by light chain phosphorylation in permeabilized smooth muscle. Am J Physiol. 1992 Jul;263(1 Pt 1):C210–C219. doi: 10.1152/ajpcell.1992.263.1.C210. [DOI] [PubMed] [Google Scholar]
  36. Walker J. W., Reid G. P., Trentham D. R. Synthesis and properties of caged nucleotides. Methods Enzymol. 1989;172:288–301. doi: 10.1016/s0076-6879(89)72019-x. [DOI] [PubMed] [Google Scholar]
  37. Wendt I. R., Gibbs C. L. Energy expenditure of longitudinal smooth muscle of rabbit urinary bladder. Am J Physiol. 1987 Jan;252(1 Pt 1):C88–C96. doi: 10.1152/ajpcell.1987.252.1.C88. [DOI] [PubMed] [Google Scholar]
  38. White H. D., Belknap B., Webb M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry. 1997 Sep 30;36(39):11828–11836. doi: 10.1021/bi970540h. [DOI] [PubMed] [Google Scholar]
  39. Wingard C. J., Paul R. J., Murphy R. A. Energetic cost of activation processes during contraction of swine arterial smooth muscle. J Physiol. 1997 May 15;501(Pt 1):213–223. doi: 10.1111/j.1469-7793.1997.213bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang Y., Moreland R. S. Regulation of Ca(2+)-dependent ATPase activity in detergent-skinned vascular smooth muscle. Am J Physiol. 1994 Sep;267(3 Pt 2):H1032–H1039. doi: 10.1152/ajpheart.1994.267.3.H1032. [DOI] [PubMed] [Google Scholar]
  41. Zimmermann B., Somlyo A. V., Ellis-Davies G. C., Kaplan J. H., Somlyo A. P. Kinetics of prephosphorylation reactions and myosin light chain phosphorylation in smooth muscle. Flash photolysis studies with caged calcium and caged ATP. J Biol Chem. 1995 Oct 13;270(41):23966–23974. doi: 10.1074/jbc.270.41.23966. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES