Abstract
We investigated a link between hemoglobin primary structure, hemoglobin hydrophobicity-hydrophilicity, and erythrocyte water content in various mammalian species. Some hemoglobin molecules, particularly those of the camel and camelids, contain more charged amino acid residues and are more hydrophilic than the hemoglobins of human and a number of other mammalian species. To test the in vivo significance of these alterations of hemoglobin primary structure, we determined the osmotically unresponsive erythrocyte water fractions in mannit solutions of various osmolarities at 4 degreesC. Among the species investigated, the size of the osmotically unresponsive erythrocyte water fraction relates in a positive linear way to hemoglobin hydrophilicity. The extreme low total erythrocyte water content of camel erythrocytes (1.1-1.3 g water/g dry mass) may be explained by a comparatively high osmotically unresponsive erythrocyte water fraction. It is proposed that alterations of hemoglobin sequences of camel and camelids may be the part of a natural selection process aimed at protecting these animals against osmotic dehydration in arid environments.
Full Text
The Full Text of this article is available as a PDF (124.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bull H. B., Breese K. Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch Biochem Biophys. 1974 Apr 2;161(2):665–670. doi: 10.1016/0003-9861(74)90352-x. [DOI] [PubMed] [Google Scholar]
- Cameron I. L., Contreras E., Fullerton G. D., Kellermayer M., Ludány A., Miseta A. Extent and properties of nonbulk "bound" water in crystalline lens cells. J Cell Physiol. 1988 Oct;137(1):125–132. doi: 10.1002/jcp.1041370115. [DOI] [PubMed] [Google Scholar]
- Cameron I. L., Kanal K. M., Keener C. R., Fullerton G. D. A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water. Cell Biol Int. 1997 Feb;21(2):99–113. doi: 10.1006/cbir.1996.0123. [DOI] [PubMed] [Google Scholar]
- Cameron I. L., Merta P., Fullerton G. D. Osmotic and motional properties of intracellular water as influenced by osmotic swelling and shrinkage of Xenopus oocytes. J Cell Physiol. 1990 Mar;142(3):592–602. doi: 10.1002/jcp.1041420320. [DOI] [PubMed] [Google Scholar]
- Clegg J. S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. 1984 Feb;246(2 Pt 2):R133–R151. doi: 10.1152/ajpregu.1984.246.2.R133. [DOI] [PubMed] [Google Scholar]
- Cowan R., Whittaker R. G. Hydrophobicity indices for amino acid residues as determined by high-performance liquid chromatography. Pept Res. 1990 Mar-Apr;3(2):75–80. [PubMed] [Google Scholar]
- Feng D. F., Johnson M. S., Doolittle R. F. Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol. 1984;21(2):112–125. doi: 10.1007/BF02100085. [DOI] [PubMed] [Google Scholar]
- Guy H. R. Amino acid side-chain partition energies and distribution of residues in soluble proteins. Biophys J. 1985 Jan;47(1):61–70. doi: 10.1016/S0006-3495(85)83877-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
- Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INGRAM V. M. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature. 1957 Aug 17;180(4581):326–328. doi: 10.1038/180326a0. [DOI] [PubMed] [Google Scholar]
- Janin J. Surface and inside volumes in globular proteins. Nature. 1979 Feb 8;277(5696):491–492. doi: 10.1038/277491a0. [DOI] [PubMed] [Google Scholar]
- Keener C. R., Fullerton G. D., Cameron I. L., Xiong J. Solution nonideality related to solute molecular characteristics of amino acids. Biophys J. 1995 Jan;68(1):291–302. doi: 10.1016/S0006-3495(95)80187-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merta P. J., Fullerton G. D., Cameron I. L. Characterization of water in unfertilized and fertilized sea urchin eggs. J Cell Physiol. 1986 Jun;127(3):439–447. doi: 10.1002/jcp.1041270313. [DOI] [PubMed] [Google Scholar]
- Myers E. W., Miller W. Optimal alignments in linear space. Comput Appl Biosci. 1988 Mar;4(1):11–17. doi: 10.1093/bioinformatics/4.1.11. [DOI] [PubMed] [Google Scholar]
- PERK K. THE CAMEL'S ERYTHROCYTE. Nature. 1963 Oct 19;200:272–273. doi: 10.1038/200272a0. [DOI] [PubMed] [Google Scholar]
- Weiser M. G., Fettman M. J., Van Houten D., Johnson L., Garry F. Characterization of erythrocytic indices and serum iron values in healthy llamas. Am J Vet Res. 1992 Oct;53(10):1776–1779. [PubMed] [Google Scholar]
- Yagil R., Sod-Moriah U. A., Meyerstein N. Dehydration and camel blood. II. Shape, size, and concentration of red blood cells. Am J Physiol. 1974 Feb;226(2):301–304. doi: 10.1152/ajplegacy.1974.226.2.301. [DOI] [PubMed] [Google Scholar]
- Zimmerman R. J., Chao H., Fullerton G. D., Cameron I. L. Solute/solvent interaction corrections account for non-ideal freezing point depression. J Biochem Biophys Methods. 1993 Feb;26(1):61–70. doi: 10.1016/0165-022x(93)90022-g. [DOI] [PubMed] [Google Scholar]