Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):3101–3109. doi: 10.1016/S0006-3495(98)77751-3

Ca2+ regulation of gelsolin activity: binding and severing of F-actin.

H J Kinosian 1, J Newman 1, B Lincoln 1, L A Selden 1, L C Gershman 1, J E Estes 1
PMCID: PMC1299981  PMID: 9826630

Abstract

Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.

Full Text

The Full Text of this article is available as a PDF (105.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. G., Janmey P. A. Gelsolin displaces phalloidin from actin filaments. A new fluorescence method shows that both Ca2+ and Mg2+ affect the rate at which gelsolin severs F-actin. J Biol Chem. 1994 Dec 30;269(52):32916–32923. [PubMed] [Google Scholar]
  2. Arcaro A. The small GTP-binding protein Rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J Biol Chem. 1998 Jan 9;273(2):805–813. doi: 10.1074/jbc.273.2.805. [DOI] [PubMed] [Google Scholar]
  3. Asch H. L., Head K., Dong Y., Natoli F., Winston J. S., Connolly J. L., Asch B. B. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res. 1996 Nov 1;56(21):4841–4845. [PubMed] [Google Scholar]
  4. Baldassare J. J., Henderson P. A., Tarver A., Fisher G. J. Thrombin activation of human platelets dissociates a complex containing gelsolin and actin from phosphatidylinositide-specific phospholipase Cgamma1. Biochem J. 1997 May 15;324(Pt 1):283–287. doi: 10.1042/bj3240283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  6. Burtnick L. D., Koepf E. K., Grimes J., Jones E. Y., Stuart D. I., McLaughlin P. J., Robinson R. C. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell. 1997 Aug 22;90(4):661–670. doi: 10.1016/s0092-8674(00)80527-9. [DOI] [PubMed] [Google Scholar]
  7. Davoodian K., Ritchings B. W., Ramphal R., Bubb M. R. Gelsolin activates DNase I in vitro and cystic fibrosis sputum. Biochemistry. 1997 Aug 12;36(32):9637–9641. doi: 10.1021/bi9711487. [DOI] [PubMed] [Google Scholar]
  8. Ditsch A., Wegner A. Two low-affinity Ca(2+)-binding sites of gelsolin that regulate association with actin. Eur J Biochem. 1995 Apr 15;229(2):512–516. doi: 10.1111/j.1432-1033.1995.0512k.x. [DOI] [PubMed] [Google Scholar]
  9. Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
  10. Hartwig J. H., Bokoch G. M., Carpenter C. L., Janmey P. A., Taylor L. A., Toker A., Stossel T. P. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell. 1995 Aug 25;82(4):643–653. doi: 10.1016/0092-8674(95)90036-5. [DOI] [PubMed] [Google Scholar]
  11. Hartwig J. H. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol. 1992 Sep;118(6):1421–1442. doi: 10.1083/jcb.118.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hellweg T., Hinssen H., Eimer W. The Ca(2+)-induced conformational change of gelsolin is located in the carboxyl-terminal half of the molecule. Biophys J. 1993 Aug;65(2):799–805. doi: 10.1016/S0006-3495(93)81121-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ismailov I. I., Berdiev B. K., Shlyonsky V. G., Fuller C. M., Prat A. G., Jovov B., Cantiello H. F., Ausiello D. A., Benos D. J. Role of actin in regulation of epithelial sodium channels by CFTR. Am J Physiol. 1997 Apr;272(4 Pt 1):C1077–C1086. doi: 10.1152/ajpcell.1997.272.4.C1077. [DOI] [PubMed] [Google Scholar]
  14. Janmey P. A., Chaponnier C., Lind S. E., Zaner K. S., Stossel T. P., Yin H. L. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry. 1985 Jul 2;24(14):3714–3723. doi: 10.1021/bi00335a046. [DOI] [PubMed] [Google Scholar]
  15. Janmey P. A., Iida K., Yin H. L., Stossel T. P. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem. 1987 Sep 5;262(25):12228–12236. [PubMed] [Google Scholar]
  16. Kinosian H. J., Selden L. A., Estes J. E., Gershman L. C. Kinetics of gelsolin interaction with phalloidin-stabilized F-actin. Rate constants for binding and severing. Biochemistry. 1996 Dec 24;35(51):16550–16556. doi: 10.1021/bi961891j. [DOI] [PubMed] [Google Scholar]
  17. Kothakota S., Azuma T., Reinhard C., Klippel A., Tang J., Chu K., McGarry T. J., Kirschner M. W., Koths K., Kwiatkowski D. J. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 1997 Oct 10;278(5336):294–298. doi: 10.1126/science.278.5336.294. [DOI] [PubMed] [Google Scholar]
  18. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  19. Kurokawa H., Fujii W., Ohmi K., Sakurai T., Nonomura Y. Simple and rapid purification of brevin. Biochem Biophys Res Commun. 1990 Apr 30;168(2):451–457. doi: 10.1016/0006-291x(90)92342-w. [DOI] [PubMed] [Google Scholar]
  20. Kwiatkowski D. J., Janmey P. A., Yin H. L. Identification of critical functional and regulatory domains in gelsolin. J Cell Biol. 1989 May;108(5):1717–1726. doi: 10.1083/jcb.108.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamb J. A., Allen P. G., Tuan B. Y., Janmey P. A. Modulation of gelsolin function. Activation at low pH overrides Ca2+ requirement. J Biol Chem. 1993 Apr 25;268(12):8999–9004. [PubMed] [Google Scholar]
  22. Lin K. M., Wenegieme E., Lu P. J., Chen C. S., Yin H. L. Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. J Biol Chem. 1997 Aug 15;272(33):20443–20450. doi: 10.1074/jbc.272.33.20443. [DOI] [PubMed] [Google Scholar]
  23. Lind S. E., Janmey P. A., Chaponnier C., Herbert T. J., Stossel T. P. Reversible binding of actin to gelsolin and profilin in human platelet extracts. J Cell Biol. 1987 Aug;105(2):833–842. doi: 10.1083/jcb.105.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lu M., Witke W., Kwiatkowski D. J., Kosik K. S. Delayed retraction of filopodia in gelsolin null mice. J Cell Biol. 1997 Sep 22;138(6):1279–1287. doi: 10.1083/jcb.138.6.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maximov A. V., Vedernikova E. A., Hinssen H., Khaitlina S. Y., Negulyaev Y. A. Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS Lett. 1997 Jul 21;412(1):94–96. doi: 10.1016/s0014-5793(97)00754-0. [DOI] [PubMed] [Google Scholar]
  26. McGough A., Chiu W., Way M. Determination of the gelsolin binding site on F-actin: implications for severing and capping. Biophys J. 1998 Feb;74(2 Pt 1):764–772. doi: 10.1016/S0006-3495(98)74001-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  28. Newman J., Day L. A., Dalack G. W., Eden D. Hydrodynamic determination of molecular weight, dimensions, and structural parameters of Pf3 virus. Biochemistry. 1982 Jul 6;21(14):3352–3358. doi: 10.1021/bi00257a016. [DOI] [PubMed] [Google Scholar]
  29. Ohtsu M., Sakai N., Fujita H., Kashiwagi M., Gasa S., Shimizu S., Eguchi Y., Tsujimoto Y., Sakiyama Y., Kobayashi K. Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J. 1997 Aug 1;16(15):4650–4656. doi: 10.1093/emboj/16.15.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pope B. J., Gooch J. T., Weeds A. G. Probing the effects of calcium on gelsolin. Biochemistry. 1997 Dec 16;36(50):15848–15855. doi: 10.1021/bi972192p. [DOI] [PubMed] [Google Scholar]
  31. Pope B., Maciver S., Weeds A. Localization of the calcium-sensitive actin monomer binding site in gelsolin to segment 4 and identification of calcium binding sites. Biochemistry. 1995 Feb 7;34(5):1583–1588. doi: 10.1021/bi00005a014. [DOI] [PubMed] [Google Scholar]
  32. Selve N., Wegner A. Rate constant for capping of the barbed ends of actin filaments by the gelsolin-actin complex. Eur J Biochem. 1986 Mar 3;155(2):397–401. doi: 10.1111/j.1432-1033.1986.tb09504.x. [DOI] [PubMed] [Google Scholar]
  33. Singh S. S., Chauhan A., Murakami N., Chauhan V. P. Profilin and gelsolin stimulate phosphatidylinositol 3-kinase activity. Biochemistry. 1996 Dec 24;35(51):16544–16549. doi: 10.1021/bi9609634. [DOI] [PubMed] [Google Scholar]
  34. Steed P. M., Nagar S., Wennogle L. P. Phospholipase D regulation by a physical interaction with the actin-binding protein gelsolin. Biochemistry. 1996 Apr 23;35(16):5229–5237. doi: 10.1021/bi952370j. [DOI] [PubMed] [Google Scholar]
  35. Way M., Gooch J., Pope B., Weeds A. G. Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J Cell Biol. 1989 Aug;109(2):593–605. doi: 10.1083/jcb.109.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weeds A. G., Gooch J., McLaughlin P., Pope B., Bengtsdotter M., Karlsson R. Identification of the trapped calcium in the gelsolin segment 1-actin complex: implications for the role of calcium in the control of gelsolin activity. FEBS Lett. 1995 Mar 6;360(3):227–230. doi: 10.1016/0014-5793(95)00109-m. [DOI] [PubMed] [Google Scholar]
  37. Wegner A., Aktories K., Ditsch A., Just I., Schoepper B., Selve N., Wille M. Actin-gelsolin interaction. Adv Exp Med Biol. 1994;358:97–104. doi: 10.1007/978-1-4615-2578-3_9. [DOI] [PubMed] [Google Scholar]
  38. Witke W., Sharpe A. H., Hartwig J. H., Azuma T., Stossel T. P., Kwiatkowski D. J. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell. 1995 Apr 7;81(1):41–51. doi: 10.1016/0092-8674(95)90369-0. [DOI] [PubMed] [Google Scholar]
  39. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES