Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):3154–3162. doi: 10.1016/S0006-3495(98)77757-4

Fe-heme conformations in ferric myoglobin.

S D Longa 1, S Pin 1, R Cortès 1, A V Soldatov 1, B Alpert 1
PMCID: PMC1299987  PMID: 9826636

Abstract

X-ray absorption near-edge structure (XANES) spectra of ferric myoglobin from horse heart have been acquired as a function of pH (between 5.3 and 11.3). At pH = 11.3 temperature-dependent spectra (between 20 and 293 K) have been collected as well. Experimental data solve three main conformations of the Fe-heme: the first, at low pH, is related to high-spin aquomet-myoglobin (Mb+OH2). The other two, at pH 11.3, are related to hydroxymet-myoglobin (Mb+OH-), and are in thermal equilibrium, corresponding to high- and low-spin Mb+OH-. The structure of the three Fe-heme conformations has been assigned according to spin-resolved multiple scattering simulations and fitting of the XANES data. The chemical transition between Mb+OH2 and high-spin Mb+OH-, and the spin transition of Mb+OH-, are accompanied by changes of the Fe coordination sphere due to its movement toward the heme plane, coupled to an increase of the axial asymmetry.

Full Text

The Full Text of this article is available as a PDF (124.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Berendzen J., Braunstein D., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E., Johnson J. B., Ormos P., Sauke T. B. Rebinding and relaxation in the myoglobin pocket. Biophys Chem. 1987 May 9;26(2-3):337–355. doi: 10.1016/0301-4622(87)80034-0. [DOI] [PubMed] [Google Scholar]
  2. Asher S. A., Schuster T. M. Resonance Raman examination of axial ligand bonding and spin-state equilibria in metmyoglobin hydroxide and other heme derivatives. Biochemistry. 1979 Nov 27;18(24):5377–5387. doi: 10.1021/bi00591a019. [DOI] [PubMed] [Google Scholar]
  3. BEETLESTONE J., GEORGE P. A MAGNETOCHEMICAL STUDY OF EQUILIBRIA BETWEEN HIGH AND LOW SPIN STATES OF METMYOGLOBIN COMPLEXES. Biochemistry. 1964 May;3:707–714. doi: 10.1021/bi00893a019. [DOI] [PubMed] [Google Scholar]
  4. Bianconi A., Congiu-Castellano A., Durham P. J., Hasnain S. S., Phillips S. The CO bond angle of carboxymyoglobin determined by angular-resolved XANES spectroscopy. Nature. 1985 Dec 19;318(6047):685–687. doi: 10.1038/318685a0. [DOI] [PubMed] [Google Scholar]
  5. Chance M. R., Miller L. M., Fischetti R. F., Scheuring E., Huang W. X., Sclavi B., Hai Y., Sullivan M. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex. Biochemistry. 1996 Jul 16;35(28):9014–9023. doi: 10.1021/bi9605503. [DOI] [PubMed] [Google Scholar]
  6. Chance M. R., Parkhurst L. J., Powers L. S., Chance B. Movement of Fe with respect to the heme plane in the R-T transition of carp hemoglobin. An extended x-ray absorption fine structure study. J Biol Chem. 1986 May 5;261(13):5689–5692. [PubMed] [Google Scholar]
  7. Della Longa S., Bianconi A., Palladino L., Simonelli B., Congiu Castellano A., Borghi E., Barteri M., Beltramini M., Rocco G. P., Salvato B. An x-ray absorption near edge structure spectroscopy study of metal coordination in Co(II)-substituted Carcinus maenas hemocyanin. Biophys J. 1993 Dec;65(6):2680–2691. doi: 10.1016/S0006-3495(93)81330-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  9. Eaton W. A., Hofrichter J. Polarized absorption and linear dichroism spectroscopy of hemoglobin. Methods Enzymol. 1981;76:175–261. doi: 10.1016/0076-6879(81)76126-3. [DOI] [PubMed] [Google Scholar]
  10. Evans S. V., Brayer G. D. Horse heart metmyoglobin. A 2.8-A resolution three-dimensional structure determination. J Biol Chem. 1988 Mar 25;263(9):4263–4268. [PubMed] [Google Scholar]
  11. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  12. Hartmann H., Parak F., Steigemann W., Petsko G. A., Ponzi D. R., Frauenfelder H. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4967–4971. doi: 10.1073/pnas.79.16.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iizuka T., Kotani M. Analysis of thermal equilibrium between high-spin and low-spin states in ferrimyoglobin complexes. Biochim Biophys Acta. 1969 May;181(1):275–286. doi: 10.1016/0005-2795(69)90250-5. [DOI] [PubMed] [Google Scholar]
  14. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  15. Parak F., Hartmann H., Aumann K. D., Reuscher H., Rennekamp G., Bartunik H., Steigemann W. Low temperature X-ray investigation of structural distributions in myoglobin. Eur Biophys J. 1987;15(4):237–249. doi: 10.1007/BF00577072. [DOI] [PubMed] [Google Scholar]
  16. Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
  17. Perutz M. F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem. 1979;48:327–386. doi: 10.1146/annurev.bi.48.070179.001551. [DOI] [PubMed] [Google Scholar]
  18. Phillips S. E. Structure and refinement of oxymyoglobin at 1.6 A resolution. J Mol Biol. 1980 Oct 5;142(4):531–554. doi: 10.1016/0022-2836(80)90262-4. [DOI] [PubMed] [Google Scholar]
  19. Pin S., Alpert B., Congiu-Castellano A., Della Longa S., Bianconi A. X-ray absorption spectroscopy of hemoglobin. Methods Enzymol. 1994;232:266–292. doi: 10.1016/0076-6879(94)32052-7. [DOI] [PubMed] [Google Scholar]
  20. Pin S., Alpert B., Cortès R., Ascone I., Chiu M. L., Sligar S. G. The heme iron coordination complex in His64(E7)Tyr recombinant sperm whale myoglobin. Biochemistry. 1994 Sep 27;33(38):11618–11623. doi: 10.1021/bi00204a024. [DOI] [PubMed] [Google Scholar]
  21. Pin S., Le Tilly V., Alpert B., Cortes R. XANES spectroscopy sensitivity to small electronic changes. Case of carp azidomethemoglobin. FEBS Lett. 1989 Jan 2;242(2):401–404. doi: 10.1016/0014-5793(89)80510-1. [DOI] [PubMed] [Google Scholar]
  22. Potter W. T., Tucker M. P., Houtchens R. A., Caughey W. S. Oxygen infrared spectra of oxyhemoglobins and oxymyoglobins. Evidence of two major liganded O2 structures. Biochemistry. 1987 Jul 28;26(15):4699–4707. doi: 10.1021/bi00389a016. [DOI] [PubMed] [Google Scholar]
  23. Schlichting I., Berendzen J., Phillips G. N., Jr, Sweet R. M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature. 1994 Oct 27;371(6500):808–812. doi: 10.1038/371808a0. [DOI] [PubMed] [Google Scholar]
  24. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
  25. Teng T. Y., Srajer V., Moffat K. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat Struct Biol. 1994 Oct;1(10):701–705. doi: 10.1038/nsb1094-701. [DOI] [PubMed] [Google Scholar]
  26. WEISS J. J. NATURE OF THE IRON-OXYGEN BOND IN OXYHAEMOGLOBIN. Nature. 1964 Apr 4;202:83–84. doi: 10.1038/202083b0. [DOI] [PubMed] [Google Scholar]
  27. Yamamoto Y. 1H-NMR study of inter-segmental hydrogen bonds in sperm whale and horse apomyoglobins. Eur J Biochem. 1997 Jan 15;243(1-2):292–298. doi: 10.1111/j.1432-1033.1997.0292a.x. [DOI] [PubMed] [Google Scholar]
  28. Yonetani T., Iizuka T., Waterman M. R. Studies on modified hemoglobins. 3. Spin states of ferric hemoglobin, semi-hemoglobin, and isolated subunit chains. J Biol Chem. 1971 Dec 25;246(24):7683–7689. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES