Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Dec;75(6):3163–3178. doi: 10.1016/S0006-3495(98)77758-6

Kinetics of beta2-integrin and L-selectin bonding during neutrophil aggregation in shear flow.

P Tandon 1, S L Diamond 1
PMCID: PMC1299988  PMID: 9826637

Abstract

Activated neutrophils aggregate in a shear field via bonding of L-selectin to P-selectin glycoprotein ligand-1 (PSGL-1) followed by a more stable bonding of LFA-1 (CD11a/CD18) to intercellular adhesion molecule 3 (ICAM-3) and Mac-1 (CD11b/CD18) to an unknown counter receptor. Assuming that the Mac-1 counter receptor is ICAM-3-like in strength and number, rate processes were deconvoluted from neutrophil homoaggregation data for shear rates (G) of 100-3000 s-1 with a two-body hydrodynamic collision model (. Biophys. J. 73:2819-2835). For integrin-mediated aggregation (characteristic bond strength of 5 microdynes) in the absence of L-selectin contributions, an average forward rate of kf = 1.57 x 10(-12) cm2/s predicted the measured efficiencies for G = 100-800 s-1. For a selectin bond formation rate constant equal to the integrin bond formation rate constant, the colloidal stability of unactivated neutrophils was satisfied for a reverse rate of the L-selectin-PGSL bond corresponding to an average bond half-life of 10 ms at a characteristic bond strength of 1 microdyne. Colliding neutrophils initially bridged by at least one L-selectin-PSGL-1 bond were calculated to rotate from 8 to 50 times at G = 400 to 3000 s-1, respectively, before obtaining mechanical stability in sheared fluid of either 0.75 or 1.75 cP viscosity. Thus for G > 400 s-1, the interaction time needed for the rotating aggregates to become stable was relatively constant at 52.5 +/- 8.5 ms, largely independent of shear rate or shear stress. Aggregation data and the colloidal stability criterion can provide a consistent set of forward and reverse rate constants and characteristic bond strengths for a known time-dependent stoichiometry of receptors on cells interacting in a shear flow field.

Full Text

The Full Text of this article is available as a PDF (203.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  3. Bargatze R. F., Kurk S., Butcher E. C., Jutila M. A. Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J Exp Med. 1994 Nov 1;180(5):1785–1792. doi: 10.1084/jem.180.5.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell D. N., Spain S., Goldsmith H. L. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates. Biophys J. 1989 Nov;56(5):817–828. doi: 10.1016/S0006-3495(89)82728-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell D. N., Spain S., Goldsmith H. L. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration. Biophys J. 1989 Nov;56(5):829–843. doi: 10.1016/S0006-3495(89)82729-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell G. I. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1979 Jun;1(2):133–147. doi: 10.1007/BF02781347. [DOI] [PubMed] [Google Scholar]
  7. Bell G. I. Estimate of the sticking probability for cells in uniform shear flow with adhesion caused by specific bonds. Cell Biophys. 1981 Sep;3(3):289–304. doi: 10.1007/BF02782629. [DOI] [PubMed] [Google Scholar]
  8. Belval T. K., Hellums J. D. Analysis of shear-induced platelet aggregation with population balance mathematics. Biophys J. 1986 Sep;50(3):479–487. doi: 10.1016/S0006-3495(86)83485-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang H. N., Robertson C. R. Platelet aggregation by laminar shear and Brownian motion. Ann Biomed Eng. 1976 Jun;4(2):151–183. doi: 10.1007/BF02363645. [DOI] [PubMed] [Google Scholar]
  10. Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
  11. Diamond M. S., Springer T. A. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol. 1993 Jan;120(2):545–556. doi: 10.1083/jcb.120.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finger E. B., Puri K. D., Alon R., Lawrence M. B., von Andrian U. H., Springer T. A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996 Jan 18;379(6562):266–269. doi: 10.1038/379266a0. [DOI] [PubMed] [Google Scholar]
  13. Goldsmith H. L., Lichtarge O., Tessier-Lavigne M., Spain S. Some model experiments in hemodynamics: VI. Two-body collisions between blood cells. Biorheology. 1981;18(3-6):531–555. doi: 10.3233/bir-1981-183-617. [DOI] [PubMed] [Google Scholar]
  14. Guyer D. A., Moore K. L., Lynam E. B., Schammel C. M., Rogelj S., McEver R. P., Sklar L. A. P-selectin glycoprotein ligand-1 (PSGL-1) is a ligand for L-selectin in neutrophil aggregation. Blood. 1996 Oct 1;88(7):2415–2421. [PubMed] [Google Scholar]
  15. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang P. Y., Hellums J. D. Aggregation and disaggregation kinetics of human blood platelets: Part I. Development and validation of a population balance method. Biophys J. 1993 Jul;65(1):334–343. doi: 10.1016/S0006-3495(93)81078-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huang P. Y., Hellums J. D. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys J. 1993 Jul;65(1):344–353. doi: 10.1016/S0006-3495(93)81079-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huang P. Y., Hellums J. D. Aggregation and disaggregation kinetics of human blood platelets: Part III. The disaggregation under shear stress of platelet aggregates. Biophys J. 1993 Jul;65(1):354–361. doi: 10.1016/S0006-3495(93)81080-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lawrence M. B., Kansas G. S., Kunkel E. J., Ley K. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E) J Cell Biol. 1997 Feb 10;136(3):717–727. doi: 10.1083/jcb.136.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  21. Moore K. L., Varki A., McEver R. P. GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction. J Cell Biol. 1991 Feb;112(3):491–499. doi: 10.1083/jcb.112.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neelamegham S., Taylor A. D., Hellums J. D., Dembo M., Smith C. W., Simon S. I. Modeling the reversible kinetics of neutrophil aggregation under hydrodynamic shear. Biophys J. 1997 Apr;72(4):1527–1540. doi: 10.1016/S0006-3495(97)78801-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okuyama M., Kambayashi J., Sakon M., Monden M. LFA-1/ICAM-3 mediates neutrophil homotypic aggregation under fluid shear stress. J Cell Biochem. 1996 Mar 15;60(4):550–559. doi: 10.1002/(SICI)1097-4644(19960315)60:4%3C550::AID-JCB11%3E3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  24. Tandon P., Diamond S. L. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow. Biophys J. 1997 Nov;73(5):2819–2835. doi: 10.1016/S0006-3495(97)78311-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taylor A. D., Neelamegham S., Hellums J. D., Smith C. W., Simon S. I. Molecular dynamics of the transition from L-selectin- to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear. Biophys J. 1996 Dec;71(6):3488–3500. doi: 10.1016/S0006-3495(96)79544-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tha S. P., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. I. Theoretical. Biophys J. 1986 Dec;50(6):1109–1116. doi: 10.1016/S0006-3495(86)83555-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walcheck B., Moore K. L., McEver R. P., Kishimoto T. K. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Invest. 1996 Sep 1;98(5):1081–1087. doi: 10.1172/JCI118888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. del Pozo M. A., Pulido R., Muñoz C., Alvarez V., Humbría A., Campanero M. R., Sánchez-Madrid F. Regulation of ICAM-3 (CD50) membrane expression on human neutrophils through a proteolytic shedding mechanism. Eur J Immunol. 1994 Nov;24(11):2586–2594. doi: 10.1002/eji.1830241104. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES