Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):956–962. doi: 10.1016/S0006-3495(99)77259-0

Preferential interactions of fluorescent probe Prodan with cholesterol.

O P Bondar 1, E S Rowe 1
PMCID: PMC1300044  PMID: 9916026

Abstract

The fluorescent probe Prodan has been widely used as a probe of model and biological membranes. Its fluorescent maxima in phospholipid bilayers vary as a function of phase state, with maxima at 485 for the liquid crystal Lalpha, 435 nm for the gel L'beta, and 507 nm for the interdigitated gel LbetaI phase, with excitation at 359 nm. These spectral changes have been used for the detection of phase changes among these phases. In the present study, the fluorescent properties and partition coefficients of Prodan in model membranes of phosphatidylcholines and phosphatidylethanols have been studied as a function of lipid phase state and cholesterol content. It is shown that the Prodan spectrum in the presence of cholesterol no longer reflects the known phase state of the lipid; in each phase state, the presence of cholesterol leads to a spectrum with the maximum at 435 nm, characteristic of the noninterdigitated gel phase. The partition coefficient of Prodan into these lipids also varies with the phase state, giving values of 0.35 x 10(4) in the interdigitated gel, 1.8 x 10(4) in the noninterdigitated gel, and 7. 6 x 10(4) in the liquid crystal phase. In the presence of cholesterol these partition coefficients are increased to 13 x 10(4) for the liquid crystal and the gel phase, and 5.1 x 10(4) in the presence of 100 mg/ml ethanol. These results suggest that Prodan has preferential interactions with cholesterol, and is thus not a randomly distributed fluorescent reporter probe in membranes containing cholesterol. These results suggest that Prodan should be used only with great caution in complex lipid mixtures, particularly biological membranes.

Full Text

The Full Text of this article is available as a PDF (72.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Bondar O. P., Pivovarenko V. G., Rowe E. S. Flavonols--new fluorescent membrane probes for studying the interdigitation of lipid bilayers. Biochim Biophys Acta. 1998 Feb 2;1369(1):119–130. doi: 10.1016/s0005-2736(97)00218-6. [DOI] [PubMed] [Google Scholar]
  3. Bondar O. P., Rowe E. S. Role of cholesterol in the modulation of interdigitation in phosphatidylethanols. Biochim Biophys Acta. 1998 Mar 13;1370(2):207–217. doi: 10.1016/s0005-2736(97)00264-2. [DOI] [PubMed] [Google Scholar]
  4. Bondar O. P., Rowe E. S. Thermotropic properties of phosphatidylethanols. Biophys J. 1996 Sep;71(3):1440–1449. doi: 10.1016/S0006-3495(96)79345-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chakrabarti A. Fluorescence of spectrin-bound prodan. Biochem Biophys Res Commun. 1996 Sep 13;226(2):495–497. doi: 10.1006/bbrc.1996.1383. [DOI] [PubMed] [Google Scholar]
  6. Chong P. L., Capes S., Wong P. T. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers: a FT-IR study. Biochemistry. 1989 Oct 17;28(21):8358–8363. doi: 10.1021/bi00447a014. [DOI] [PubMed] [Google Scholar]
  7. Chong P. L. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry. 1988 Jan 12;27(1):399–404. doi: 10.1021/bi00401a060. [DOI] [PubMed] [Google Scholar]
  8. De Young L. R., Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry. 1988 Jul 12;27(14):5281–5289. doi: 10.1021/bi00414a050. [DOI] [PubMed] [Google Scholar]
  9. Harris R. A. Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles. Arch Biochem Biophys. 1971 Dec;147(2):436–445. doi: 10.1016/0003-9861(71)90399-7. [DOI] [PubMed] [Google Scholar]
  10. Hsieh C. H., Wu W. G. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures. Biophys J. 1995 Jul;69(1):4–12. doi: 10.1016/S0006-3495(95)79885-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang Z. J., Haugland R. P. Partition coefficients of fluorescent probes with phospholipid membranes. Biochem Biophys Res Commun. 1991 Nov 27;181(1):166–171. doi: 10.1016/s0006-291x(05)81396-8. [DOI] [PubMed] [Google Scholar]
  12. Hutterer R., Schneider F. W., Sprinz H., Hof M. Binding and relaxation behaviour of prodan and patman in phospholipid vesicles: a fluorescence and 1H NMR study. Biophys Chem. 1996 Oct 30;61(2-3):151–160. doi: 10.1016/s0301-4622(96)02185-0. [DOI] [PubMed] [Google Scholar]
  13. Komatsu H., Rowe E. S. Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine. Biochemistry. 1991 Mar 5;30(9):2463–2470. doi: 10.1021/bi00223a024. [DOI] [PubMed] [Google Scholar]
  14. Luxnat M., Galla H. J. Partition of chlorpromazine into lipid bilayer membranes: the effect of membrane structure and composition. Biochim Biophys Acta. 1986 Apr 14;856(2):274–282. doi: 10.1016/0005-2736(86)90037-4. [DOI] [PubMed] [Google Scholar]
  15. Macgregor R. B., Weber G. Estimation of the polarity of the protein interior by optical spectroscopy. Nature. 1986 Jan 2;319(6048):70–73. doi: 10.1038/319070a0. [DOI] [PubMed] [Google Scholar]
  16. Massey J. B., She H. S., Pownall H. J. Interfacial properties of model membranes and plasma lipoproteins containing ether lipids. Biochemistry. 1985 Nov 19;24(24):6973–6978. doi: 10.1021/bi00345a033. [DOI] [PubMed] [Google Scholar]
  17. Mazumdar M., Parrack P. K., Bhattacharyya B. Interaction of Prodan with tubulin. A fluorescence spectroscopic study. Eur J Biochem. 1992 Feb 15;204(1):127–132. doi: 10.1111/j.1432-1033.1992.tb16614.x. [DOI] [PubMed] [Google Scholar]
  18. McIntosh T. J., Simon S. A., Ellington J. C., Jr, Porter N. A. New structural model for mixed-chain phosphatidylcholine bilayers. Biochemistry. 1984 Aug 28;23(18):4038–4044. doi: 10.1021/bi00313a005. [DOI] [PubMed] [Google Scholar]
  19. Rottenberg H. Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan. Biochemistry. 1992 Oct 6;31(39):9473–9481. doi: 10.1021/bi00154a021. [DOI] [PubMed] [Google Scholar]
  20. Rowe E. S. Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim Biophys Acta. 1985 Mar 14;813(2):321–330. doi: 10.1016/0005-2736(85)90248-2. [DOI] [PubMed] [Google Scholar]
  21. Slater J. L., Huang C. H. Interdigitated bilayer membranes. Prog Lipid Res. 1988;27(4):325–359. doi: 10.1016/0163-7827(88)90010-0. [DOI] [PubMed] [Google Scholar]
  22. Weber G., Farris F. J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry. 1979 Jul 10;18(14):3075–3078. doi: 10.1021/bi00581a025. [DOI] [PubMed] [Google Scholar]
  23. Wilkinson D. A., Tirrell D. A., Turek A. B., McIntosh T. J. Tris buffer causes acyl chain interdigitation in phosphatidylglycerol. Biochim Biophys Acta. 1987 Dec 11;905(2):447–453. doi: 10.1016/0005-2736(87)90474-3. [DOI] [PubMed] [Google Scholar]
  24. Zeng J. W., Chong P. L. Interactions between pressure and ethanol on the formation of interdigitated DPPC liposomes: a study with Prodan fluorescence. Biochemistry. 1991 Oct 1;30(39):9485–9491. doi: 10.1021/bi00103a014. [DOI] [PubMed] [Google Scholar]
  25. Zeng J., Chong P. L. Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan. Biophys J. 1995 Feb;68(2):567–573. doi: 10.1016/S0006-3495(95)80218-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zeng J., Smith K. E., Chong P. L. Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles. Biophys J. 1993 Oct;65(4):1404–1414. doi: 10.1016/S0006-3495(93)81204-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES