Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):1001–1007. doi: 10.1016/S0006-3495(99)77264-4

Effects of SH1 and SH2 modifications on myosin: similarities and differences.

E A Bobkova 1, A A Bobkov 1, D I Levitsky 1, E Reisler 1
PMCID: PMC1300049  PMID: 9916031

Abstract

The properties of myosin modified at the SH2 group (Cys-697) were studied and compared with the previously reported properties of myosin modified at the SH1 group (Cys-707). 4-[N-[(iodoacetoxy)ethyl]-N methylamino]-7-nitrobenz-2-oxa-1, 3-diazole (IANBD) was used for selective modification of the SH2 group on myosin. SH2-labeled heavy meromyosin (SH2-HMM), similar to SH1-labeled HMM (SH1-HMM), did not propel actin filaments in the in vitro motility assays. SH1- and SH2-HMM produced similar amounts of load in the mixtures with unmodified HMM; the sliding speed of actin filaments gradually decreased with an increase in the fraction of either one of the modified HMMs in the mixture. In analogy to SH1-labeled myosin subfragment 1 (SH1-S1), SH2-labeled S1 (SH2-S1) activated regulated actin in the in vitro motility assays. SH2 modification inhibited Mg-ATPase of S1 and its activation by actin. The weak binding of S1 to actin was unaffected whereas the strong binding was weakened by SH2 modification. Overall, our results demonstrate similar behavior of SH1- and SH2-modified myosin heads in the in vitro motility assays despite some differences in their enzymatic properties. The effects of these modifications are ascribed to the location of the SH1-SH2 helix relative to other functional centers of S1.

Full Text

The Full Text of this article is available as a PDF (87.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajtai K., Burghardt T. P. Fluorescent modification and orientation of myosin sulfhydryl 2 in skeletal muscle fibers. Biochemistry. 1989 Mar 7;28(5):2204–2210. doi: 10.1021/bi00431a035. [DOI] [PubMed] [Google Scholar]
  2. Bobkov A. A., Bobkova E. A., Homsher E., Reisler E. Activation of regulated actin by SH1-modified myosin subfragment 1. Biochemistry. 1997 Jun 24;36(25):7733–7738. doi: 10.1021/bi963185o. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Burke M., Reisler E. Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transitions. Biochemistry. 1977 Dec 13;16(25):5559–5563. doi: 10.1021/bi00644a026. [DOI] [PubMed] [Google Scholar]
  5. Cuda G., Pate E., Cooke R., Sellers J. R. In vitro actin filament sliding velocities produced by mixtures of different types of myosin. Biophys J. 1997 Apr;72(4):1767–1779. doi: 10.1016/S0006-3495(97)78823-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  7. Godfrey J. E., Harrington W. F. Self-association in the myosin system at high ionic strength. I. Sensitivity of the interaction to pH and ionic environment. Biochemistry. 1970 Feb 17;9(4):886–893. doi: 10.1021/bi00806a025. [DOI] [PubMed] [Google Scholar]
  8. Golitsina N. L., Bobkov A. A., Dedova I. V., Pavlov D. A., Nikolaeva O. P., Orlov V. N., Levitsky D. I. Differential scanning calorimetric study of the complexes of modified myosin subfragment 1 with ADP and vanadate or beryllium fluoride. J Muscle Res Cell Motil. 1996 Aug;17(4):475–485. doi: 10.1007/BF00123363. [DOI] [PubMed] [Google Scholar]
  9. Hiratsuka T. Movement of Cys-697 in myosin ATPase associated with ATP hydrolysis. J Biol Chem. 1992 Jul 25;267(21):14941–14948. [PubMed] [Google Scholar]
  10. Homsher E., Kim B., Bobkova A., Tobacman L. S. Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J. 1996 Apr;70(4):1881–1892. doi: 10.1016/S0006-3495(96)79753-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kinose F., Wang S. X., Kidambi U. S., Moncman C. L., Winkelmann D. A. Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. J Cell Biol. 1996 Aug;134(4):895–909. doi: 10.1083/jcb.134.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kodama T., Fukui K., Kometani K. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J Biochem. 1986 May;99(5):1465–1472. doi: 10.1093/oxfordjournals.jbchem.a135616. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  15. Marriott G., Heidecker M. Light-directed generation of the actin-activated ATPase activity of caged heavy meromyosin. Biochemistry. 1996 Mar 12;35(10):3170–3174. doi: 10.1021/bi952207o. [DOI] [PubMed] [Google Scholar]
  16. Miller C. J., Reisler E. Role of charged amino acid pairs in subdomain-1 of actin in interactions with myosin. Biochemistry. 1995 Feb 28;34(8):2694–2700. doi: 10.1021/bi00008a037. [DOI] [PubMed] [Google Scholar]
  17. Mulhern S. A., Eisenberg E. Interaction of spin-labeled and N-(iodacetylaminoethyl)-5-naphthylamine-1-sulfonic acid SH1-blocked heavy meromyosin and myosin with actin and adenosine triphosphate. Biochemistry. 1978 Oct 17;17(21):4419–4425. doi: 10.1021/bi00614a010. [DOI] [PubMed] [Google Scholar]
  18. Ostap E. M., White H. D., Thomas D. D. Transient detection of spin-labeled myosin subfragment 1 conformational states during ATP hydrolysis. Biochemistry. 1993 Jul 6;32(26):6712–6720. doi: 10.1021/bi00077a026. [DOI] [PubMed] [Google Scholar]
  19. Patterson B., Ruppel K. M., Wu Y., Spudich J. A. Cold-sensitive mutants G680V and G691C of Dictyostelium myosin II confer dramatically different biochemical defects. J Biol Chem. 1997 Oct 31;272(44):27612–27617. doi: 10.1074/jbc.272.44.27612. [DOI] [PubMed] [Google Scholar]
  20. Phan B. C., Cheung P., Stafford W. F., Reisler E. Complexes of myosin subfragment-1 with adenosine diphosphate and phosphate analogs: probes of active site and protein conformation. Biophys Chem. 1996 Apr 16;59(3):341–349. doi: 10.1016/0301-4622(95)00127-1. [DOI] [PubMed] [Google Scholar]
  21. Rajasekharan K. N., Mayadevi M., Burke M. Studies of ligand-induced conformational perturbations in myosin subfragment 1. An examination of the environment about the SH2 and SH1 thiols using a photoprobe. J Biol Chem. 1989 Jun 25;264(18):10810–10819. [PubMed] [Google Scholar]
  22. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  23. Reisler E., Burke M., Harrington W. F. Cooperative role of two sulfhydryl groups in myosin adenosine triphosphatase. Biochemistry. 1974 May 7;13(10):2014–2022. doi: 10.1021/bi00707a003. [DOI] [PubMed] [Google Scholar]
  24. Reisler E., Burke M., Himmelfarb S., Harrington W. F. Spatial proximity of the two essential sulfhydryl groups of myosin. Biochemistry. 1974 Sep 10;13(19):3837–3840. doi: 10.1021/bi00716a001. [DOI] [PubMed] [Google Scholar]
  25. Reisler E. Sulfhydryl modification and labeling of myosin. Methods Enzymol. 1982;85(Pt B):84–93. doi: 10.1016/0076-6879(82)85012-x. [DOI] [PubMed] [Google Scholar]
  26. Root D. D., Reisler E. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function. Biophys J. 1992 Sep;63(3):730–740. doi: 10.1016/S0006-3495(92)81646-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  28. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  29. Suzuki Y., Ohkura R., Sugiura S., Yasuda R., Kinoshita K., Jr, Tanokura M., Sutoh K. Modulation of actin filament sliding by mutations of the SH2 cysteine in Dictyostelium myosin II. Biochem Biophys Res Commun. 1997 May 29;234(3):701–706. doi: 10.1006/bbrc.1997.6671. [DOI] [PubMed] [Google Scholar]
  30. Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weeds A. G., Pope B. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol. 1977 Apr;111(2):129–157. doi: 10.1016/s0022-2836(77)80119-8. [DOI] [PubMed] [Google Scholar]
  32. Wells J. A., Knoeber C., Sheldon M. C., Werber M. M., Yount R. G. Cross-linking of myosin subfragment 1. Nucleotide-enhanced modification by a variety of bifunctional reagents. J Biol Chem. 1980 Dec 10;255(23):11135–11140. [PubMed] [Google Scholar]
  33. Wells J. A., Yount R. G. Reaction of 5,5'-dithiobis(2-nitrobenzoic acid) with myosin subfragment one: evidence for formation of a single protein disulfide with trapping of metal nucleotide at the active site. Biochemistry. 1980 Apr 15;19(8):1711–1717. doi: 10.1021/bi00549a030. [DOI] [PubMed] [Google Scholar]
  34. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES