Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):1024–1033. doi: 10.1016/S0006-3495(99)77267-X

Oriented, active Escherichia coli RNA polymerase: an atomic force microscope study.

N H Thomson 1, B L Smith 1, N Almqvist 1, L Schmitt 1, M Kashlev 1, E T Kool 1, P K Hansma 1
PMCID: PMC1300052  PMID: 9916034

Abstract

Combining a system for binding proteins to surfaces (Sigal, G. B., C. Bamdad, A. Barberis, J. Strominger, and G. M. Whitesides. 1996. Anal. Chem. 68:490-497) with a method for making ultraflat gold surfaces (Hegner, M., P. Wagner, and G. Semenza. 1993. Surface Sci. 291:39-46 1993) has enabled single, oriented, active Escherichia coli RNA polymerase (RNAP) molecules to be imaged under aqueous buffer using tapping-mode atomic force microscopy (AFM). Recombinant RNAP molecules containing histidine tags (hisRNAP) on the C-terminus were specifically immobilized on ultraflat gold via a mixed monolayer of two different omega-functionalized alkanethiols. One alkanethiol was terminated in an ethylene-glycol (EG) group, which resists protein adsorption, and the other was terminated in an N-nitrilotriacetic acid (NTA) group, which binds the histidine tag through two coordination sites with a nickel ion. AFM images showed that these two alkanethiols phase-segregate. Specific binding of the hisRNAP molecules was followed in situ by injecting proteins directly into the AFM fluid cell. The activity of the hisRNAP bound to the NTA groups was confirmed with a 42-base circular single-stranded DNA template (rolling circle), which the RNAP uses to produce huge RNA transcripts. These transcripts were imaged in air after the samples were rinsed and dried, since RNA also has low affinity for the EG-thiol and cannot be imaged under the buffers we used.

Full Text

The Full Text of this article is available as a PDF (443.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  2. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  3. Hochuli E., Döbeli H., Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr. 1987 Dec 18;411:177–184. doi: 10.1016/s0021-9673(00)93969-4. [DOI] [PubMed] [Google Scholar]
  4. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  5. Kashlev M., Martin E., Polyakov A., Severinov K., Nikiforov V., Goldfarb A. Histidine-tagged RNA polymerase: dissection of the transcription cycle using immobilized enzyme. Gene. 1993 Aug 16;130(1):9–14. doi: 10.1016/0378-1119(93)90340-9. [DOI] [PubMed] [Google Scholar]
  6. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  7. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  8. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  9. Rubin E., Rumney S., 4th, Wang S., Kool E. T. Convergent DNA synthesis: a non-enzymatic dimerization approach to circular oligodeoxynucleotides. Nucleic Acids Res. 1995 Sep 11;23(17):3547–3553. doi: 10.1093/nar/23.17.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sigal G. B., Bamdad C., Barberis A., Strominger J., Whitesides G. M. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal Chem. 1996 Feb 1;68(3):490–497. doi: 10.1021/ac9504023. [DOI] [PubMed] [Google Scholar]
  11. Thomson N. H., Fritz M., Radmacher M., Cleveland J. P., Schmidt C. F., Hansma P. K. Protein tracking and detection of protein motion using atomic force microscopy. Biophys J. 1996 May;70(5):2421–2431. doi: 10.1016/S0006-3495(96)79812-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wagner P., Hegner M., Kernen P., Zaugg F., Semenza G. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy. Biophys J. 1996 May;70(5):2052–2066. doi: 10.1016/S0006-3495(96)79810-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wagner P., Kernen P., Hegner M., Ungewickell E., Semenza G. Covalent anchoring of proteins onto gold-directed NHS-terminated self-assembled monolayers in aqueous buffers: SFM images of clathrin cages and triskelia. FEBS Lett. 1994 Dec 19;356(2-3):267–271. doi: 10.1016/0014-5793(94)01296-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES