Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):1034–1042. doi: 10.1016/S0006-3495(99)77268-1

The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins.

J Fitter 1
PMCID: PMC1300053  PMID: 9916035

Abstract

Internal molecular motions of proteins are strongly affected by environmental conditions, like temperature and hydration. As known from numerous studies, the dynamical behavior of hydrated proteins on the picosecond time scale is characterized by vibrational motions in the low-temperature regime and by an onset of stochastic large-amplitude fluctuations at a transition temperature of 180-230 K. The present study reports on the temperature dependence of internal molecular motions as measured with incoherent neutron scattering from the globular water-soluble protein alpha-amylase and from a protein-lipid complex of rhodopsin in disk membranes. Samples of alpha-amylase have been measured in a hydrated and dehydrated state. In contrast to the hydrated sample, which exhibits a pronounced dynamical transition near 200 K, the dehydrated alpha-amylase does not show an appreciable proportion of stochastic large-amplitude fluctuations and no dynamical transition in the measured temperature range of 140-300 K. The obtained results, which are compared to the dynamical behavior of protein-lipid complexes, are discussed with respect to the influence of hydration on the dynamical transition and in the framework of the glass transition.

Full Text

The Full Text of this article is available as a PDF (144.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
  2. Bartunik H. D., Jollès P., Berthou J., Dianoux A. J. Intramolecular low-frequency vibrations in lysozyme by neutron time-of-flight spectroscopy. Biopolymers. 1982 Jan;21(1):43–50. doi: 10.1002/bip.360210105. [DOI] [PubMed] [Google Scholar]
  3. Bellissent-Funel M. C., Teixeira J., Chen S. H., Dorner B., Middendorf H. D., Crespi H. L. Low-frequency collective modes in dry and hydrated proteins. Biophys J. 1989 Oct;56(4):713–716. doi: 10.1016/S0006-3495(89)82718-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks C. L., 3rd, Karplus M. Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J Mol Biol. 1989 Jul 5;208(1):159–181. doi: 10.1016/0022-2836(89)90093-4. [DOI] [PubMed] [Google Scholar]
  5. Cordone L., Galajda P., Vitrano E., Gassmann A., Ostermann A., Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 1998;27(2):173–176. doi: 10.1007/s002490050123. [DOI] [PubMed] [Google Scholar]
  6. Crowe L. M., Reid D. S., Crowe J. H. Is trehalose special for preserving dry biomaterials? Biophys J. 1996 Oct;71(4):2087–2093. doi: 10.1016/S0006-3495(96)79407-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cusack S., Doster W. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J. 1990 Jul;58(1):243–251. doi: 10.1016/S0006-3495(90)82369-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniels B. V., Schoenborn B. P., Korszun Z. R. Myoglobin solvent structure at different temperatures. Basic Life Sci. 1996;64:325–331. doi: 10.1007/978-1-4615-5847-7_28. [DOI] [PubMed] [Google Scholar]
  9. Demmel F., Doster W., Petry W., Schulte A. Vibrational frequency shifts as a probe of hydrogen bonds: thermal expansion and glass transition of myoglobin in mixed solvents. Eur Biophys J. 1997;26(4):327–335. doi: 10.1007/s002490050087. [DOI] [PubMed] [Google Scholar]
  10. Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diehl M., Doster W., Petry W., Schober H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys J. 1997 Nov;73(5):2726–2732. doi: 10.1016/S0006-3495(97)78301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doster W., Bachleitner A., Dunau R., Hiebl M., Lüscher E. Thermal properties of water in myoglobin crystals and solutions at subzero temperatures. Biophys J. 1986 Aug;50(2):213–219. doi: 10.1016/S0006-3495(86)83455-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  14. Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finney J. L., Gellatly B. J., Golton I. C., Goodfellow J. Solvent effects and polar interactions in the structural stability and dynamics of globular proteins. Biophys J. 1980 Oct;32(1):17–33. doi: 10.1016/S0006-3495(80)84913-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fitter J., Ernst O. P., Hauss T., Lechner R. E., Hofmann K. P., Dencher N. A. Molecular motions and hydration of purple membranes and disk membranes studied by neutron scattering. Eur Biophys J. 1998;27(6):638–645. doi: 10.1007/s002490050175. [DOI] [PubMed] [Google Scholar]
  17. Fitter J., Lechner R. E., Dencher N. A. Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J. 1997 Oct;73(4):2126–2137. doi: 10.1016/S0006-3495(97)78243-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fitter J., Verclas S. A., Lechner R. E., Seelert H., Dencher N. A. Function and picosecond dynamics of bacteriorhodopsin in purple membrane at different lipidation and hydration. FEBS Lett. 1998 Aug 21;433(3):321–325. doi: 10.1016/s0014-5793(98)00938-7. [DOI] [PubMed] [Google Scholar]
  19. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  20. Go N., Noguti T., Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3696–3700. doi: 10.1073/pnas.80.12.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
  22. Iben IE, Braunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ. Glassy behavior of a protein. Phys Rev Lett. 1989 Apr 17;62(16):1916–1919. doi: 10.1103/PhysRevLett.62.1916. [DOI] [PubMed] [Google Scholar]
  23. Kuntz I. D., Jr, Kauzmann W. Hydration of proteins and polypeptides. Adv Protein Chem. 1974;28:239–345. doi: 10.1016/s0065-3233(08)60232-6. [DOI] [PubMed] [Google Scholar]
  24. Lechner R. E., Fitter J., Dencher N. A., Hauss T. Dehydration of biological membranes by cooling: an investigation on the purple membrane. J Mol Biol. 1998 Apr 3;277(3):593–603. doi: 10.1006/jmbi.1997.1597. [DOI] [PubMed] [Google Scholar]
  25. Martel P., Calmettes P., Hennion B. Vibrational modes of hemoglobin in red blood cells. Biophys J. 1991 Feb;59(2):363–374. doi: 10.1016/S0006-3495(91)82230-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Norin M., Haeffner F., Hult K., Edholm O. Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent. Biophys J. 1994 Aug;67(2):548–559. doi: 10.1016/S0006-3495(94)80515-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Painter P. C., Mosher L. E., Rhoads C. Low-frequency modes in the Raman spectra of proteins. Biopolymers. 1982 Jul;21(7):1469–1472. doi: 10.1002/bip.360210715. [DOI] [PubMed] [Google Scholar]
  28. Parak F. Correlation of protein dynamics with water mobility: Mössbauer spectroscopy and microwave absorption methods. Methods Enzymol. 1986;127:196–206. doi: 10.1016/0076-6879(86)27016-0. [DOI] [PubMed] [Google Scholar]
  29. Parak F., Knapp E. W. A consistent picture of protein dynamics. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7088–7092. doi: 10.1073/pnas.81.22.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  31. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  32. Shah N. K., Ludescher R. D. Influence of hydration on the internal dynamics of hen egg white lysozyme in the dry state. Photochem Photobiol. 1993 Aug;58(2):169–174. doi: 10.1111/j.1751-1097.1993.tb09544.x. [DOI] [PubMed] [Google Scholar]
  33. Sochava I. V. Heat capacity and thermodynamic characteristics of denaturation and glass transition of hydrated and anhydrous proteins. Biophys Chem. 1997 Nov;69(1):31–41. doi: 10.1016/s0301-4622(97)00072-0. [DOI] [PubMed] [Google Scholar]
  34. Sokolov AP, Hurst J, Quitmann D. Dynamics of supercooled water: Mode-coupling theory approach. Phys Rev B Condens Matter. 1995 May 1;51(18):12865–12868. doi: 10.1103/physrevb.51.12865. [DOI] [PubMed] [Google Scholar]
  35. Steinbach P. J., Brooks B. R. Hydrated myoglobin's anharmonic fluctuations are not primarily due to dihedral transitions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):55–59. doi: 10.1073/pnas.93.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilden U., Kühn H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry. 1982 Jun 8;21(12):3014–3022. doi: 10.1021/bi00541a032. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES