Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3

Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature.

L Cordone 1, M Ferrand 1, E Vitrano 1, G Zaccai 1
PMCID: PMC1300054  PMID: 9916036

Abstract

Embedding biostructures in saccharide glasses protects them against extreme dehydration and/or exposure to very high temperature. Among the saccharides, trehalose appears to be the most effective bioprotectant. In this paper we report on the low-frequency dynamics of carbon monoxy myoglobin in an extremely dry trehalose glass measured by neutron spectroscopy. Under these conditions, the mean square displacements and the density of state function are those of a harmonic solid, up to room temperature, in contrast to D2O-hydrated myoglobin, in which a dynamical transition to a nonharmonic regime has been observed at approximately 180 K (Doster et al., 1989. Nature. 337:754-756). The protective effect of trehalose is correlated, therefore, with a trapping of the protein in a harmonic potential, even at relatively high temperature.

Full Text

The Full Text of this article is available as a PDF (65.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cordone L., Galajda P., Vitrano E., Gassmann A., Ostermann A., Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 1998;27(2):173–176. doi: 10.1007/s002490050123. [DOI] [PubMed] [Google Scholar]
  2. Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
  3. Cupane A., Leone M., Vitrano E., Cordone L. Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins. Eur Biophys J. 1995;23(6):385–398. doi: 10.1007/BF00196825. [DOI] [PubMed] [Google Scholar]
  4. Cusack S., Doster W. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J. 1990 Jul;58(1):243–251. doi: 10.1016/S0006-3495(90)82369-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  7. Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
  9. Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
  10. Leone M., Cupane A., Militello V., Cordone L. Thermal broadening of the Soret band in heme complexes and in heme-proteins: role of iron dynamics. Eur Biophys J. 1994;23(5):349–352. doi: 10.1007/BF00188658. [DOI] [PubMed] [Google Scholar]
  11. Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Panek A. D. Trehalose metabolism--new horizons in technological applications. Braz J Med Biol Res. 1995 Feb;28(2):169–181. [PubMed] [Google Scholar]
  14. Parak F., Knapp E. W., Kucheida D. Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982 Oct 15;161(1):177–194. doi: 10.1016/0022-2836(82)90285-6. [DOI] [PubMed] [Google Scholar]
  15. Réat V., Patzelt H., Ferrand M., Pfister C., Oesterhelt D., Zaccai G. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970–4975. doi: 10.1073/pnas.95.9.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Uritani M., Takai M., Yoshinaga K. Protective effect of disaccharides on restriction endonucleases during drying under vacuum. J Biochem. 1995 Apr;117(4):774–779. doi: 10.1093/oxfordjournals.jbchem.a124775. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES