Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):1072–1079. doi: 10.1016/S0006-3495(99)77272-3

Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope.

H Mueller 1, H J Butt 1, E Bamberg 1
PMCID: PMC1300057  PMID: 9916039

Abstract

The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.

Full Text

The Full Text of this article is available as a PDF (94.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshar-Rad T., Bailey A. I., Luckham P. F., MacNaughtan W., Chapman D. Forces between proteins and model polypeptides adsorbed on mica surfaces. Biochim Biophys Acta. 1987 Sep 2;915(1):101–111. doi: 10.1016/0167-4838(87)90129-4. [DOI] [PubMed] [Google Scholar]
  2. Allen S., Chen X., Davies J., Davies M. C., Dawkes A. C., Edwards J. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry. 1997 Jun 17;36(24):7457–7463. doi: 10.1021/bi962531z. [DOI] [PubMed] [Google Scholar]
  3. Beniac D. R., Luckevich M. D., Czarnota G. J., Tompkins T. A., Ridsdale R. A., Ottensmeyer F. P., Moscarello M. A., Harauz G. Three-dimensional structure of myelin basic protein. I. Reconstruction via angular reconstitution of randomly oriented single particles. J Biol Chem. 1997 Feb 14;272(7):4261–4268. doi: 10.1074/jbc.272.7.4261. [DOI] [PubMed] [Google Scholar]
  4. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  5. Boggs J. M., Chia L. S., Rangaraj G., Moscarello M. A. Interaction of myelin basic protein with different ionization states of phosphatidic acid and phosphatidylserine. Chem Phys Lipids. 1986 Jan;39(1-2):165–184. doi: 10.1016/0009-3084(86)90110-6. [DOI] [PubMed] [Google Scholar]
  6. Boggs J. M., Wood D. D., Moscarello M. A. Hydrophobic and electrostatic interactions of myelin basic proteins with lipid. Participation of N-terminal and C-terminal portions. Biochemistry. 1981 Mar 3;20(5):1065–1073. doi: 10.1021/bi00508a004. [DOI] [PubMed] [Google Scholar]
  7. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown H. G., Hoh J. H. Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry. 1997 Dec 9;36(49):15035–15040. doi: 10.1021/bi9721748. [DOI] [PubMed] [Google Scholar]
  9. Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
  10. Cajal Y., Boggs J. M., Jain M. K. Salt-triggered intermembrane exchange of phospholipids and hemifusion by myelin basic protein. Biochemistry. 1997 Mar 4;36(9):2566–2576. doi: 10.1021/bi962232+. [DOI] [PubMed] [Google Scholar]
  11. Campagnoni A. T. Molecular biology of myelin proteins from the central nervous system. J Neurochem. 1988 Jul;51(1):1–14. doi: 10.1111/j.1471-4159.1988.tb04827.x. [DOI] [PubMed] [Google Scholar]
  12. Cheifetz S., Moscarello M. A. Effect of bovine basic protein charge microheterogeneity on protein-induced aggregation of unilamellar vesicles containing a mixture of acidic and neutral phospholipids. Biochemistry. 1985 Apr 9;24(8):1909–1914. doi: 10.1021/bi00329a016. [DOI] [PubMed] [Google Scholar]
  13. Crang A. J., Rumsby M. G. Molecular organisation in central nerve myelin. Adv Exp Med Biol. 1978;100:235–248. doi: 10.1007/978-1-4684-2514-7_17. [DOI] [PubMed] [Google Scholar]
  14. Dammer U., Popescu O., Wagner P., Anselmetti D., Güntherodt H. J., Misevic G. N. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science. 1995 Feb 24;267(5201):1173–1175. doi: 10.1126/science.7855599. [DOI] [PubMed] [Google Scholar]
  15. Eylar E. H., Brostoff S., Hashim G., Caccam J., Burnett P. Basic A1 protein of the myelin membrane. The complete amino acid sequence. J Biol Chem. 1971 Sep 25;246(18):5770–5784. [PubMed] [Google Scholar]
  16. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  17. Fraser P. E., Rand R. P., Deber C. M. Bilayer-stabilizing properties of myelin basic protein in dioleoylphosphatidylethanolamine systems. Biochim Biophys Acta. 1989 Jul 24;983(1):23–29. doi: 10.1016/0005-2736(89)90375-1. [DOI] [PubMed] [Google Scholar]
  18. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huxley A. F., Stämpfli R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol. 1949 May 15;108(3):315–339. [PMC free article] [PubMed] [Google Scholar]
  20. Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
  21. Jo E., Boggs J. M. Aggregation of acidic lipid vesicles by myelin basic protein: dependence on potassium concentration. Biochemistry. 1995 Oct 17;34(41):13705–13716. doi: 10.1021/bi00041a053. [DOI] [PubMed] [Google Scholar]
  22. Keniry M. A., Smith R. Circular dichroic analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and to lipid vesicles. Biochim Biophys Acta. 1979 Jun 19;578(2):381–391. doi: 10.1016/0005-2795(79)90169-7. [DOI] [PubMed] [Google Scholar]
  23. Keniry M. A., Smith R. Dependence on lipid structure of the coil-to-helix transition of bovine myelin basic protein. Biochim Biophys Acta. 1981 Mar 27;668(1):107–118. doi: 10.1016/0005-2795(81)90154-9. [DOI] [PubMed] [Google Scholar]
  24. Krigbaum W. R., Hsu T. S. Molecular conformation of bovine A1 basic protein, a coiling macromolecule in aqueous solution. Biochemistry. 1975 Jun 3;14(11):2542–2546. doi: 10.1021/bi00682a038. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Lampe P. D., Nelsestuen G. L. Myelin basic protein-enhanced fusion of membranes. Biochim Biophys Acta. 1982 Dec 22;693(2):320–325. doi: 10.1016/0005-2736(82)90438-2. [DOI] [PubMed] [Google Scholar]
  27. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  28. Leikin S., Parsegian V. A., Rau D. C., Rand R. P. Hydration forces. Annu Rev Phys Chem. 1993;44:369–395. doi: 10.1146/annurev.pc.44.100193.002101. [DOI] [PubMed] [Google Scholar]
  29. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  30. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  31. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  32. Mendz G. L., Brown L. R., Martenson R. E. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles. Biochemistry. 1990 Mar 6;29(9):2304–2311. doi: 10.1021/bi00461a014. [DOI] [PubMed] [Google Scholar]
  33. Mendz G. L., Miller D. J., Ralston G. B. Interactions of myelin basic protein with palmitoyllysophosphatidylcholine: characterization of the complexes and conformations of the protein. Eur Biophys J. 1995;24(1):39–53. doi: 10.1007/BF00216829. [DOI] [PubMed] [Google Scholar]
  34. Mendz G. L., Moore W. J., Brown L. R., Martenson R. E. Interaction of myelin basic protein with micelles of dodecylphosphocholine. Biochemistry. 1984 Dec 4;23(25):6041–6046. doi: 10.1021/bi00320a022. [DOI] [PubMed] [Google Scholar]
  35. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  36. Nabet A., Boggs J. M., Pézolet M. Study by infrared spectroscopy of the interaction of bovine myelin basic protein with phosphatidic acid. Biochemistry. 1994 Dec 13;33(49):14792–14799. doi: 10.1021/bi00253a018. [DOI] [PubMed] [Google Scholar]
  37. Nezil F. A., Bayerl S., Bloom M. Temperature-reversible eruptions of vesicles in model membranes studied by NMR. Biophys J. 1992 May;61(5):1413–1426. doi: 10.1016/S0006-3495(92)81947-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Readhead C., Popko B., Takahashi N., Shine H. D., Saavedra R. A., Sidman R. L., Hood L. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell. 1987 Feb 27;48(4):703–712. doi: 10.1016/0092-8674(87)90248-0. [DOI] [PubMed] [Google Scholar]
  39. Reinl H. M., Bayerl T. M. Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study. Biochim Biophys Acta. 1993 Sep 19;1151(2):127–136. doi: 10.1016/0005-2736(93)90095-h. [DOI] [PubMed] [Google Scholar]
  40. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  41. Roux M., Nezil F. A., Monck M., Bloom M. Fragmentation of phospholipid bilayers by myelin basic protein. Biochemistry. 1994 Jan 11;33(1):307–311. doi: 10.1021/bi00167a040. [DOI] [PubMed] [Google Scholar]
  42. Sedzik J., Blaurock A. E., Höchli M. Lipid/myelin basic protein multilayers. A model for the cytoplasmic space in central nervous system myelin. J Mol Biol. 1984 Apr 5;174(2):385–409. doi: 10.1016/0022-2836(84)90344-9. [DOI] [PubMed] [Google Scholar]
  43. Smith R. The basic protein of CNS myelin: its structure and ligand binding. J Neurochem. 1992 Nov;59(5):1589–1608. doi: 10.1111/j.1471-4159.1992.tb10989.x. [DOI] [PubMed] [Google Scholar]
  44. Smith R. The secondary structure of myelin basic protein extracted by deoxycholate. Biochim Biophys Acta. 1977 Apr 25;491(2):581–590. doi: 10.1016/0005-2795(77)90304-x. [DOI] [PubMed] [Google Scholar]
  45. Staugaitis S. M., Colman D. R., Pedraza L. Membrane adhesion and other functions for the myelin basic proteins. Bioessays. 1996 Jan;18(1):13–18. doi: 10.1002/bies.950180106. [DOI] [PubMed] [Google Scholar]
  46. Surewicz W. K., Moscarello M. A., Mantsch H. H. Fourier transform infrared spectroscopic investigation of the interaction between myelin basic protein and dimyristoylphosphatidylglycerol bilayers. Biochemistry. 1987 Jun 30;26(13):3881–3886. doi: 10.1021/bi00387a021. [DOI] [PubMed] [Google Scholar]
  47. Vinckier A., Gervasoni P., Zaugg F., Ziegler U., Lindner P., Groscurth P., Plückthun A., Semenza G. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. Biophys J. 1998 Jun;74(6):3256–3263. doi: 10.1016/S0006-3495(98)78032-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zand R., Li M. X., Jin X., Lubman D. Determination of the sites of posttranslational modifications in the charge isomers of bovine myelin basic protein by capillary electrophoresis-mass spectroscopy. Biochemistry. 1998 Feb 24;37(8):2441–2449. doi: 10.1021/bi972347t. [DOI] [PubMed] [Google Scholar]
  49. ter Beest M. B., Hoekstra D. Interaction of myelin basic protein with artificial membranes. Parameters governing binding, aggregation and dissociation. Eur J Biochem. 1993 Feb 1;211(3):689–696. doi: 10.1111/j.1432-1033.1993.tb17597.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES