Abstract
Coordinated cell movement is a major mechanism of the multicellular development of most organisms. The multicellular morphogenesis of the slime mould Dictyostelium discoideum, from single cells into a multicellular fruiting body, results from differential chemotactic cell movement. During aggregation cells differentiate into prestalk and prespore cells that will form the stalk and spores in the fruiting body. These cell types arise in a salt and pepper pattern after what the prestalk cells chemotactically sort out to form a tip. The tip functions as an organizer because it directs the further development. It has been difficult to get a satisfactory formal description of the movement behavior of cells in tissues. Based on our experiments, we consider the aggregate as a drop of a viscous fluid and show that this consideration is very well suited to mathematically describe the motion of cells in the tissue. We show that the transformation of a hemispherical mound into an elongated slug can result from the coordinated chemotactic cell movement in response to scroll waves of the chemoattractant cAMP. The model calculations furthermore show that cell sorting can result from differences in chemotactic cell movement and cAMP relay kinetics between the two cell types. During this process, the faster moving and stronger signaling cells collect on the top of the mound to form a tip. The mound then extends into an elongated slug just as observed in experiments. The model is able to describe cell movement patterns in the complex multicellular morphogenesis of Dictyostelium rather well and we expect that this approach may be useful in the modeling of tissue transformations in other systems.
Full Text
The Full Text of this article is available as a PDF (446.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Early A., Siegert F., Weijer C., Williams J. Patterns of cell movement within the Dictyostelium slug revealed by cell type-specific, surface labeling of living cells. Cell. 1994 Jun 3;77(5):687–699. doi: 10.1016/0092-8674(94)90053-1. [DOI] [PubMed] [Google Scholar]
- Bretschneider T, Vasiev B, Weijer CJ. A Model for Cell Movement During Dictyostelium Mound Formation. J Theor Biol. 1997 Nov 7;189(1):41–51. doi: 10.1006/jtbi.1997.0490. [DOI] [PubMed] [Google Scholar]
- Chen M. Y., Insall R. H., Devreotes P. N. Signaling through chemoattractant receptors in Dictyostelium. Trends Genet. 1996 Feb;12(2):52–57. doi: 10.1016/0168-9525(96)81400-4. [DOI] [PubMed] [Google Scholar]
- Dormann D., Siegert F., Weijer C. J. Analysis of cell movement during the culmination phase of Dictyostelium development. Development. 1996 Mar;122(3):761–769. doi: 10.1242/dev.122.3.761. [DOI] [PubMed] [Google Scholar]
- Early A., Abe T., Williams J. Evidence for positional differentiation of prestalk cells and for a morphogenetic gradient in Dictyostelium. Cell. 1995 Oct 6;83(1):91–99. doi: 10.1016/0092-8674(95)90237-6. [DOI] [PubMed] [Google Scholar]
- Eliott S., Joss G. H., Spudich A., Williams K. L. Patterns in Dictyostelium discoideum: the role of myosin II in the transition from the unicellular to the multicellular phase. J Cell Sci. 1993 Feb;104(Pt 2):457–466. doi: 10.1242/jcs.104.2.457. [DOI] [PubMed] [Google Scholar]
- Firtel R. A. Integration of signaling information in controlling cell-fate decisions in Dictyostelium. Genes Dev. 1995 Jun 15;9(12):1427–1444. doi: 10.1101/gad.9.12.1427. [DOI] [PubMed] [Google Scholar]
- Martiel J. L., Goldbeter A. A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. Biophys J. 1987 Nov;52(5):807–828. doi: 10.1016/S0006-3495(87)83275-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otte A. P., Plomp M. J., Arents J. C., Janssens P. M., van Driel R. Production and turnover of cAMP signals by prestalk and prespore cells in Dictyostelium discoideum cell aggregates. Differentiation. 1986;32(3):185–191. doi: 10.1111/j.1432-0436.1986.tb00572.x. [DOI] [PubMed] [Google Scholar]
- Rietdorf J., Siegert F., Dharmawardhane S., Firtel R. A., Weijer C. J. Analysis of cell movement and signalling during ring formation in an activated G alpha1 mutant of Dictyostelium discoideum that is defective in prestalk zone formation. Dev Biol. 1997 Jan 1;181(1):79–90. doi: 10.1006/dbio.1996.8447. [DOI] [PubMed] [Google Scholar]
- Rietdorf J., Siegert F., Weijer C. J. Analysis of optical density wave propagation and cell movement during mound formation in Dictyostelium discoideum. Dev Biol. 1996 Aug 1;177(2):427–438. doi: 10.1006/dbio.1996.0175. [DOI] [PubMed] [Google Scholar]
- Rivero F., Köppel B., Peracino B., Bozzaro S., Siegert F., Weijer C. J., Schleicher M., Albrecht R., Noegel A. A. The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J Cell Sci. 1996 Nov;109(Pt 11):2679–2691. doi: 10.1242/jcs.109.11.2679. [DOI] [PubMed] [Google Scholar]
- Siegert F., Weijer C. J., Nomura A., Miike H. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development. J Cell Sci. 1994 Jan;107(Pt 1):97–104. doi: 10.1242/jcs.107.1.97. [DOI] [PubMed] [Google Scholar]
- Siegert F., Weijer C. J. Spiral and concentric waves organize multicellular Dictyostelium mounds. Curr Biol. 1995 Aug 1;5(8):937–943. doi: 10.1016/s0960-9822(95)00184-9. [DOI] [PubMed] [Google Scholar]
- Siegert F., Weijer C. J. Three-dimensional scroll waves organize Dictyostelium slugs. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6433–6437. doi: 10.1073/pnas.89.14.6433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternfeld J., David C. N. Oxygen gradients cause pattern orientation in Dictyostelium cell clumps. J Cell Sci. 1981 Aug;50:9–17. doi: 10.1242/jcs.50.1.9. [DOI] [PubMed] [Google Scholar]
- Tang Y., Othmer H. G. A G protein-based model of adaptation in Dictyostelium discoideum. Math Biosci. 1994 Mar;120(1):25–76. doi: 10.1016/0025-5564(94)90037-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang Y., Othmer H. G. Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. Philos Trans R Soc Lond B Biol Sci. 1995 Aug 29;349(1328):179–195. doi: 10.1098/rstb.1995.0102. [DOI] [PubMed] [Google Scholar]
- Williams J. Morphogenesis in Dictyostelium: new twists to a not-so-old tale. Curr Opin Genet Dev. 1995 Aug;5(4):426–431. doi: 10.1016/0959-437x(95)90044-h. [DOI] [PubMed] [Google Scholar]
- van Oss C., Panfilov A. V., Hogeweg P., Siegert F., Weijer C. J. Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum. J Theor Biol. 1996 Aug 7;181(3):203–213. doi: 10.1006/jtbi.1996.0126. [DOI] [PubMed] [Google Scholar]