Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):679–690. doi: 10.1016/S0006-3495(99)77235-8

Homology modeling of cephalopod lens S-crystallin: a natural mutant of sigma-class glutathione transferase with diminished endogenous activity.

C C Chuang 1, S H Wu 1, S H Chiou 1, G G Chang 1
PMCID: PMC1300073  PMID: 9929473

Abstract

The soluble S-crystallin constitutes the major lens protein in cephalopods. The primary amino acid sequence of S-crystallin shows an overall 41% identity with the digestive gland sigma-class glutathione transferase (GST) of cephalopod. However, the lens S-crystallin fails to bind to the S-hexylglutathione affinity column and shows very little GST activity in the nucleophilic aromatic substitution reaction between GSH and 1-chloro-2,4-dinitrobenzene. When compared with other classes of GST, the S-crystallin has an 11-amino acid residues insertion between the conserved alpha4 and alpha5 helices. Based on the crystal structure of squid sigma-class GST, a tertiary structure model for the octopus lens S-crystallin is constructed. The modeled S-crystallin structure has an overall topology similar to the squid sigma-class GST, albeit with longer alpha4 and alpha5 helical chains, corresponding to the long insertion. This insertion, however, makes the active center region of S-crystallin to be in a more closed conformation than the sigma-class GST. The active center region of S-crystallin is even more shielded and buried after dimerization, which may explain for the failure of S-crystallin to bind to the immobilized-glutathione in affinity chromatography. In the active site region, the electrostatic potential surface calculated from the modeled structure is quite different from that of squid GST. The positively charged environment, which contributes to stabilize the negatively charged Meisenheimer complex, is altered in S-crystallin probably because of mutation of Asn99 in GST to Asp101 in S-crystallin. Furthermore, the important Phe106 in authentic GST is changed to His108 in S-crystallin. Combining the topological differences as revealed by computer graphics and sequence variation at these structurally relevant residues provide strong structural evidences to account for the much decreased GST activity of S-crystallin as compared with the authentic GST of the digestive gland.

Full Text

The Full Text of this article is available as a PDF (856.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. N. Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:1–44. doi: 10.1002/9780470123157.ch1. [DOI] [PubMed] [Google Scholar]
  2. Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. doi: 10.1021/tx960072x. [DOI] [PubMed] [Google Scholar]
  3. Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed] [Google Scholar]
  4. Barycki J. J., Colman R. F. Affinity labeling of glutathione S-transferase, isozyme 4-4, by 4-(fluorosulfonyl)benzoic acid reveals Tyr115 to be an important determinant of xenobiotic substrate specificity. Biochemistry. 1993 Dec 7;32(48):13002–13011. doi: 10.1021/bi00211a008. [DOI] [PubMed] [Google Scholar]
  5. Björnestedt R., Stenberg G., Widersten M., Board P. G., Sinning I., Jones T. A., Mannervik B. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. J Mol Biol. 1995 Apr 7;247(4):765–773. doi: 10.1016/s0022-2836(05)80154-8. [DOI] [PubMed] [Google Scholar]
  6. Bower M. J., Cohen F. E., Dunbrack R. L., Jr Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol. 1997 Apr 18;267(5):1268–1282. doi: 10.1006/jmbi.1997.0926. [DOI] [PubMed] [Google Scholar]
  7. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  8. Chelvanayagam G., Wilce M. C., Parker M. W., Tan K. L., Board P. G. Homology model for the human GSTT2 Theta class glutathione transferase. Proteins. 1997 Jan;27(1):118–130. doi: 10.1002/(sici)1097-0134(199701)27:1<118::aid-prot12>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  9. Chiou S. H. Physicochemical characterization of a crystallin from the squid lens and its comparison with vertebrate lens crystallins. J Biochem. 1984 Jan;95(1):75–82. doi: 10.1093/oxfordjournals.jbchem.a134605. [DOI] [PubMed] [Google Scholar]
  10. Chiou S. H., Yu C. W., Lin C. W., Pan F. M., Lu S. F., Lee H. J., Chang G. G. Octopus S-crystallins with endogenous glutathione S-transferase (GST) activity: sequence comparison and evolutionary relationships with authentic GST enzymes. Biochem J. 1995 Aug 1;309(Pt 3):793–800. doi: 10.1042/bj3090793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dirr H., Reinemer P., Huber R. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 A resolution. J Mol Biol. 1994 Oct 14;243(1):72–92. doi: 10.1006/jmbi.1994.1631. [DOI] [PubMed] [Google Scholar]
  12. Dirr H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. doi: 10.1111/j.1432-1033.1994.tb18666.x. [DOI] [PubMed] [Google Scholar]
  13. Du P., Collins J. R., Loew G. H. Homology modeling of a heme protein, lignin peroxidase, from the crystal structure of cytochrome c peroxidase. Protein Eng. 1992 Oct;5(7):679–691. doi: 10.1093/protein/5.7.679. [DOI] [PubMed] [Google Scholar]
  14. Dunbrack R. L., Jr, Karplus M. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Biol. 1994 May;1(5):334–340. doi: 10.1038/nsb0594-334. [DOI] [PubMed] [Google Scholar]
  15. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  17. Hobohm U., Sander C. Enlarged representative set of protein structures. Protein Sci. 1994 Mar;3(3):522–524. doi: 10.1002/pro.5560030317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ji X., Armstrong R. N., Gilliland G. L. Snapshots along the reaction coordinate of an SNAr reaction catalyzed by glutathione transferase. Biochemistry. 1993 Dec 7;32(48):12949–12954. doi: 10.1021/bi00211a001. [DOI] [PubMed] [Google Scholar]
  19. Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. doi: 10.1021/bi00157a004. [DOI] [PubMed] [Google Scholar]
  20. Ji X., von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry. 1995 Apr 25;34(16):5317–5328. doi: 10.1021/bi00016a003. [DOI] [PubMed] [Google Scholar]
  21. Johnson M. S., Srinivasan N., Sowdhamini R., Blundell T. L. Knowledge-based protein modeling. Crit Rev Biochem Mol Biol. 1994;29(1):1–68. doi: 10.3109/10409239409086797. [DOI] [PubMed] [Google Scholar]
  22. Johnson W. W., Liu S., Ji X., Gilliland G. L., Armstrong R. N. Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione S-transferase. J Biol Chem. 1993 Jun 5;268(16):11508–11511. [PubMed] [Google Scholar]
  23. Koehler R. T., Villar H. O., Bauer K. E., Higgins D. L. Ligand-based protein alignment and isozyme specificity of glutathione S-transferase inhibitors. Proteins. 1997 Jun;28(2):202–216. doi: 10.1002/(sici)1097-0134(199706)28:2<202::aid-prot9>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  24. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  25. Lemer C. M., Rooman M. J., Wodak S. J. Protein structure prediction by threading methods: evaluation of current techniques. Proteins. 1995 Nov;23(3):337–355. doi: 10.1002/prot.340230308. [DOI] [PubMed] [Google Scholar]
  26. Lin C. W., Chiou S. H. Facile cloning and sequencing of S-crystallin genes from octopus lenses based on polymerase chain reaction. Biochem Int. 1992 Jun;27(1):173–178. [PubMed] [Google Scholar]
  27. Liu S., Zhang P., Ji X., Johnson W. W., Gilliland G. L., Armstrong R. N. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J Biol Chem. 1992 Mar 5;267(7):4296–4299. [PubMed] [Google Scholar]
  28. Lo Bello M., Oakley A. J., Battistoni A., Mazzetti A. P., Nuccetelli M., Mazzarese G., Rossjohn J., Parker M. W., Ricci G. Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme. Biochemistry. 1997 May 20;36(20):6207–6217. doi: 10.1021/bi962813z. [DOI] [PubMed] [Google Scholar]
  29. Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  30. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  31. Marsh A., Ferguson D. M. Knowledge-based modeling of a bacterial dichloromethane dehalogenase. Proteins. 1997 Jun;28(2):217–226. doi: 10.1002/(sici)1097-0134(199706)28:2<217::aid-prot10>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  32. Meyer D. J., Xia C., Coles B., Chen H., Reinemer P., Huber R., Ketterer B. Unusual reactivity of Tyr-7 of GSH transferase P1-1. Biochem J. 1993 Jul 15;293(Pt 2):351–356. doi: 10.1042/bj2930351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  34. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  35. Orozco M., Vega C., Parraga A., García-Sáez I., Coll M., Walsh S., Mantle T. J., Javier Luque F. On the reaction mechanism of class Pi glutathione S-transferase. Proteins. 1997 Aug;28(4):530–542. [PubMed] [Google Scholar]
  36. Piatigorsky J. Lens crystallins. Innovation associated with changes in gene regulation. J Biol Chem. 1992 Mar 5;267(7):4277–4280. [PubMed] [Google Scholar]
  37. Prade L., Huber R., Manoharan T. H., Fahl W. E., Reuter W. Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor. Structure. 1997 Oct 15;5(10):1287–1295. doi: 10.1016/s0969-2126(97)00281-5. [DOI] [PubMed] [Google Scholar]
  38. Rushmore T. H., Pickett C. B. Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem. 1993 Jun 5;268(16):11475–11478. [PubMed] [Google Scholar]
  39. Shoichet B. K., Baase W. A., Kuroki R., Matthews B. W. A relationship between protein stability and protein function. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452–456. doi: 10.1073/pnas.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
  41. Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
  42. Smith T. F., Waterman M. S. Identification of common molecular subsequences. J Mol Biol. 1981 Mar 25;147(1):195–197. doi: 10.1016/0022-2836(81)90087-5. [DOI] [PubMed] [Google Scholar]
  43. Summers N. L., Karplus M. Modeling of globular proteins. A distance-based data search procedure for the construction of insertion/deletion regions and Pro----non-Pro mutations. J Mol Biol. 1990 Dec 20;216(4):991–1016. doi: 10.1016/S0022-2836(99)80016-3. [DOI] [PubMed] [Google Scholar]
  44. Tang S. S., Chang G. G. Kinetic characterization of the endogenous glutathione transferase activity of octopus lens S-crystallin. J Biochem. 1996 Jun;119(6):1182–1188. doi: 10.1093/oxfordjournals.jbchem.a021366. [DOI] [PubMed] [Google Scholar]
  45. Tang S. S., Chang G. G. Steady-state kinetics and chemical mechanism of octopus hepatopancreatic glutathione transferase. Biochem J. 1995 Jul 1;309(Pt 1):347–353. doi: 10.1042/bj3090347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tang S. S., Lin C. C., Chang G. G. Isolation and characterization of octopus hepatopancreatic glutathione S-transferase. Comparison of digestive gland enzyme with lens S-crystallin. J Protein Chem. 1994 Oct;13(7):609–618. doi: 10.1007/BF01890459. [DOI] [PubMed] [Google Scholar]
  47. Tomarev S. I., Chung S., Piatigorsky J. Glutathione S-transferase and S-crystallins of cephalopods: evolution from active enzyme to lens-refractive proteins. J Mol Evol. 1995 Dec;41(6):1048–1056. doi: 10.1007/BF00173186. [DOI] [PubMed] [Google Scholar]
  48. Tomarev S. I., Piatigorsky J. Lens crystallins of invertebrates--diversity and recruitment from detoxification enzymes and novel proteins. Eur J Biochem. 1996 Feb 1;235(3):449–465. doi: 10.1111/j.1432-1033.1996.00449.x. [DOI] [PubMed] [Google Scholar]
  49. Tomarev S. I., Zinovieva R. D., Piatigorsky J. Characterization of squid crystallin genes. Comparison with mammalian glutathione S-transferase genes. J Biol Chem. 1992 Apr 25;267(12):8604–8612. [PubMed] [Google Scholar]
  50. Vinals C., De Bolle X., Depiereux E., Feytmans E. Knowledge-based modeling of the D-lactate dehydrogenase three-dimensional structure. Proteins. 1995 Apr;21(4):307–318. doi: 10.1002/prot.340210405. [DOI] [PubMed] [Google Scholar]
  51. Wilce M. C., Board P. G., Feil S. C., Parker M. W. Crystal structure of a theta-class glutathione transferase. EMBO J. 1995 May 15;14(10):2133–2143. doi: 10.1002/j.1460-2075.1995.tb07207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wilce M. C., Parker M. W. Structure and function of glutathione S-transferases. Biochim Biophys Acta. 1994 Mar 16;1205(1):1–18. doi: 10.1016/0167-4838(94)90086-8. [DOI] [PubMed] [Google Scholar]
  53. Wilmanns M., Eisenberg D. Inverse protein folding by the residue pair preference profile method: estimating the correctness of alignments of structurally compatible sequences. Protein Eng. 1995 Jul;8(7):627–639. doi: 10.1093/protein/8.7.627. [DOI] [PubMed] [Google Scholar]
  54. de Jong W. W., Hendriks W., Mulders J. W., Bloemendal H. Evolution of eye lens crystallins: the stress connection. Trends Biochem Sci. 1989 Sep;14(9):365–368. doi: 10.1016/0968-0004(89)90009-1. [DOI] [PubMed] [Google Scholar]
  55. el Hawrani A. S., Moreton K. M., Sessions R. B., Clarke A. R., Holbrook J. J. Engineering surface loops of proteins--a preferred strategy for obtaining new enzyme function. Trends Biotechnol. 1994 May;12(5):207–211. doi: 10.1016/0167-7799(94)90084-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES