Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):709–715. doi: 10.1016/S0006-3495(99)77237-1

Single-molecule imaging of RNA polymerase-DNA interactions in real time.

Y Harada 1, T Funatsu 1, K Murakami 1, Y Nonoyama 1, A Ishihama 1, T Yanagida 1
PMCID: PMC1300075  PMID: 9929475

Abstract

Using total internal reflection fluorescence microscopy, we have directly observed individual interactions of single RNA polymerase molecules with a single molecule of lambda-phage DNA suspended in solution by optical traps. The interactions of RNA polymerase molecules were not homogeneous along DNA. They dissociated slowly from the positions of the promoters and sequences common to promoters at a rate of approximately 0.66 s-1, which was more than severalfold smaller than the rate at other positions. The association rate constant for the slow dissociation sites was 9.2 x 10(2) bp-1 M-1 s-1. The frequency of binding to the fast dissociation sites was dependent on the A-T composition; it was larger in the AT-rich regions than in the GC-rich regions. RNA polymerase molecules on the fast dissociation sites underwent linear diffusion (sliding) along DNA. The binding to the slow dissociation sites was greatly enhanced when DNA was released to a relaxed state, suggesting that the binding depended on the strain exerted on the DNA. The present method is potentially applicable to the examination of a wide variety of protein-nucleic acid interactions, especially those involved in the process of transcription.

Full Text

The Full Text of this article is available as a PDF (221.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berliner E., Young E. C., Anderson K., Mahtani H. K., Gelles J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature. 1995 Feb 23;373(6516):718–721. doi: 10.1038/373718a0. [DOI] [PubMed] [Google Scholar]
  2. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  3. Craig M. L., Suh W. C., Record M. T., Jr HO. and DNase I probing of E sigma 70 RNA polymerase--lambda PR promoter open complexes: Mg2+ binding and its structural consequences at the transcription start site. Biochemistry. 1995 Dec 5;34(48):15624–15632. doi: 10.1021/bi00048a004. [DOI] [PubMed] [Google Scholar]
  4. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  5. Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
  6. Giladi H., Murakami K., Ishihama A., Oppenheim A. B. Identification of an UP element within the IHF binding site at the PL1-PL2 tandem promoter of bacteriophage lambda. J Mol Biol. 1996 Jul 26;260(4):484–491. doi: 10.1006/jmbi.1996.0416. [DOI] [PubMed] [Google Scholar]
  7. Harada Y., Funatsu T., Tokunaga M., Saito K., Higuchi H., Ishii Y., Yanagida T. Single molecule imaging and nanomanipulation of biomolecules. Methods Cell Biol. 1998;55:117–128. doi: 10.1016/s0091-679x(08)60405-7. [DOI] [PubMed] [Google Scholar]
  8. Harada Y., Sakurada K., Aoki T., Thomas D. D., Yanagida T. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol. 1990 Nov 5;216(1):49–68. doi: 10.1016/S0022-2836(05)80060-9. [DOI] [PubMed] [Google Scholar]
  9. Higuchi H., Muto E., Inoue Y., Yanagida T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4395–4400. doi: 10.1073/pnas.94.9.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Igarashi K., Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 1991 Jun 14;65(6):1015–1022. doi: 10.1016/0092-8674(91)90553-b. [DOI] [PubMed] [Google Scholar]
  11. Ishijima A., Kojima H., Funatsu T., Tokunaga M., Higuchi H., Tanaka H., Yanagida T. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998 Jan 23;92(2):161–171. doi: 10.1016/s0092-8674(00)80911-3. [DOI] [PubMed] [Google Scholar]
  12. Iwane A. H., Funatsu T., Harada Y., Tokunaga M., Ohara O., Morimoto S., Yanagida T. Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett. 1997 Apr 28;407(2):235–238. doi: 10.1016/s0014-5793(97)00359-1. [DOI] [PubMed] [Google Scholar]
  13. Kabata H., Kurosawa O., Arai I., Washizu M., Margarson S. A., Glass R. E., Shimamoto N. Visualization of single molecules of RNA polymerase sliding along DNA. Science. 1993 Dec 3;262(5139):1561–1563. doi: 10.1126/science.8248804. [DOI] [PubMed] [Google Scholar]
  14. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  15. Matsumoto S., Morikawa K., Yanagida M. Light microscopic structure of DNA in solution studied by the 4',6-diamidino-2-phenylindole staining method. J Mol Biol. 1981 Oct 25;152(2):501–516. doi: 10.1016/0022-2836(81)90255-2. [DOI] [PubMed] [Google Scholar]
  16. McClure W. R. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. [DOI] [PubMed] [Google Scholar]
  17. Perkins T. T., Smith D. E., Chu S. Direct observation of tube-like motion of a single polymer chain. Science. 1994 May 6;264(5160):819–822. doi: 10.1126/science.8171335. [DOI] [PubMed] [Google Scholar]
  18. Polyakov A., Severinova E., Darst S. A. Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell. 1995 Nov 3;83(3):365–373. doi: 10.1016/0092-8674(95)90114-0. [DOI] [PubMed] [Google Scholar]
  19. Rees W. A., Keller R. W., Vesenka J. P., Yang G., Bustamante C. Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. Science. 1993 Jun 11;260(5114):1646–1649. doi: 10.1126/science.8503010. [DOI] [PubMed] [Google Scholar]
  20. Ricchetti M., Metzger W., Heumann H. One-dimensional diffusion of Escherichia coli DNA-dependent RNA polymerase: a mechanism to facilitate promoter location. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4610–4614. doi: 10.1073/pnas.85.13.4610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rippe K., Guthold M., von Hippel P. H., Bustamante C. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J Mol Biol. 1997 Jul 11;270(2):125–138. doi: 10.1006/jmbi.1997.1079. [DOI] [PubMed] [Google Scholar]
  22. Schafer D. A., Gelles J., Sheetz M. P., Landick R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature. 1991 Aug 1;352(6334):444–448. doi: 10.1038/352444a0. [DOI] [PubMed] [Google Scholar]
  23. Singer P., Wu C. W. Promoter search by Escherichia coli RNA polymerase on a circular DNA template. J Biol Chem. 1987 Oct 15;262(29):14178–14189. [PubMed] [Google Scholar]
  24. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  25. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  26. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
  27. Tang Y., Murakami K., Ishihama A., deHaseth P. L. Upstream interactions at the lambda pRM promoter are sequence nonspecific and activate the promoter to a lesser extent than an introduced UP element of an rRNA promoter. J Bacteriol. 1996 Dec;178(23):6945–6951. doi: 10.1128/jb.178.23.6945-6951.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tokunaga M., Kitamura K., Saito K., Iwane A. H., Yanagida T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun. 1997 Jun 9;235(1):47–53. doi: 10.1006/bbrc.1997.6732. [DOI] [PubMed] [Google Scholar]
  29. Tsuda Y., Yasutake H., Ishijima A., Yanagida T. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12937–12942. doi: 10.1073/pnas.93.23.12937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vale R. D., Funatsu T., Pierce D. W., Romberg L., Harada Y., Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature. 1996 Apr 4;380(6573):451–453. doi: 10.1038/380451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Werner M. H., Gronenborn A. M., Clore G. M. Intercalation, DNA kinking, and the control of transcription. Science. 1996 Feb 9;271(5250):778–784. doi: 10.1126/science.271.5250.778. [DOI] [PubMed] [Google Scholar]
  33. Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., Gelles J. Transcription against an applied force. Science. 1995 Dec 8;270(5242):1653–1657. doi: 10.1126/science.270.5242.1653. [DOI] [PubMed] [Google Scholar]
  34. von Hippel P. H., Berg O. G. Facilitated target location in biological systems. J Biol Chem. 1989 Jan 15;264(2):675–678. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES