Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):716–724. doi: 10.1016/S0006-3495(99)77238-3

A physical approach to reduce nonspecific adhesion in molecular recognition atomic force microscopy.

O H Willemsen 1, M M Snel 1, L Kuipers 1, C G Figdor 1, J Greve 1, B G De Grooth 1
PMCID: PMC1300076  PMID: 9929476

Abstract

Atomic force microscopy is one of the few techniques that allow analysis of biological recognition processes at the single-molecule level. A major limitation of this approach is the nonspecific interaction between the force sensor and substrate. We have modeled the nonspecific interaction by looking at the interaction potential between a conical Si3N4 tip with a spherical end face and a mica surface in solution, using DLVO (Derjaguin, Landau, Verwey, Overbeek) theory and numerical calculations. Insertion of the tip-sample potential in a simulation of an approach-retract cycle of the cantilever gives the well-known force-distance curve. Simulating a force-distance curve at low salt concentration predicts a discrete hopping of the tip, caused by thermal fluctuations. This hopping behavior was observed experimentally and gave rise to a novel approach to making measurements in adhesion mode that essentially works in the repulsive regime. The distance between tip and sample will still be small enough to allow spacer-involved specific interactions, and the percentage of nonspecific interactions of the bare tip with the mica is minimized. We have validated this physical model by imaging intercellular adhesion molecule 1 (ICAM-1) antigen with a tip functionalized with anti-ICAM-1 antibody. The measurement demonstrated that a significant decrease in the number of nonspecific interactions was realized, and the topographical image quality and the specific bonding capability of the tip were not affected.

Full Text

The Full Text of this article is available as a PDF (276.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S., Chen X., Davies J., Davies M. C., Dawkes A. C., Edwards J. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry. 1997 Jun 17;36(24):7457–7463. doi: 10.1021/bi962531z. [DOI] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Butt H. J. Electrostatic interaction in atomic force microscopy. Biophys J. 1991 Oct;60(4):777–785. doi: 10.1016/S0006-3495(91)82112-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butt H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J. 1991 Dec;60(6):1438–1444. doi: 10.1016/S0006-3495(91)82180-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleveland JP, Schäffer TE, Hansma PK. Probing oscillatory hydration potentials using thermal-mechanical noise in an atomic-force microscope. Phys Rev B Condens Matter. 1995 Sep 15;52(12):R8692–R8695. doi: 10.1103/physrevb.52.r8692. [DOI] [PubMed] [Google Scholar]
  6. Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., Güntherodt H. J. Specific antigen/antibody interactions measured by force microscopy. Biophys J. 1996 May;70(5):2437–2441. doi: 10.1016/S0006-3495(96)79814-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  8. Haselgrübler T., Amerstorfer A., Schindler H., Gruber H. J. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjug Chem. 1995 May-Jun;6(3):242–248. doi: 10.1021/bc00033a002. [DOI] [PubMed] [Google Scholar]
  9. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Müller D. J., Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J. 1997 Sep;73(3):1633–1644. doi: 10.1016/S0006-3495(97)78195-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Putman C. A., van der Werf K. O., de Grooth B. G., van Hulst N. F., Greve J. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J. 1994 Oct;67(4):1749–1753. doi: 10.1016/S0006-3495(94)80649-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Radmacher M., Cleveland J. P., Fritz M., Hansma H. G., Hansma P. K. Mapping interaction forces with the atomic force microscope. Biophys J. 1994 Jun;66(6):2159–2165. doi: 10.1016/S0006-3495(94)81011-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Willemsen O. H., Snel M. M., van der Werf K. O., de Grooth B. G., Greve J., Hinterdorfer P., Gruber H. J., Schindler H., van Kooyk Y., Figdor C. G. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J. 1998 Nov;75(5):2220–2228. doi: 10.1016/S0006-3495(98)77666-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. van Noort S. J., van der Werf K. O., Eker A. P., Wyman C., de Grooth B. G., van Hulst N. F., Greve J. Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. Biophys J. 1998 Jun;74(6):2840–2849. doi: 10.1016/S0006-3495(98)77991-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES