Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):782–803. doi: 10.1016/S0006-3495(99)77243-7

Kramers' diffusion theory applied to gating kinetics of voltage-dependent ion channels.

D Sigg 1, H Qian 1, F Bezanilla 1
PMCID: PMC1300081  PMID: 9929481

Abstract

Kramers' diffusion theory of reaction rates in the condensed phase is considered as an alternative to the traditional discrete-state Markov (DSM) model in describing ion channel gating current kinetics. Diffusion theory can be expected to be particularly relevant in describing high-frequency (>100 kHz) events in channel activation. The generalized voltage sensor of a voltage-dependent ion channel is treated as a Brownian motion particle undergoing spatial diffusion along a one-dimensional energy landscape. Two classes of energy landscapes are considered. The first class contains large barriers, which give rise to gating currents with two distinct time scales: the usual low-frequency decay, which can modeled with a DSM scheme, and a high-frequency component arising from intrastate relaxation. Large depolarizations reduce potential barriers to such a degree that activation rates are diffusion limited, causing the two time scales to merge. Landscapes of the second class are either featureless or contain barriers that are small compared to kT; these are termed "drift landscapes." These landscapes require a larger friction coefficient to generate slow gating kinetics. The high-frequency component that appears with barrier models is not present in pure drift motion. The presence of a high-frequency component can be tested experimentally with large-bandwidth recordings of gating currents. Topics such as frequency domain analysis, spatial dependence of the friction coefficient, methods for determining the adequacy of a DSM model, and the development of physical models of gating are explored.

Full Text

The Full Text of this article is available as a PDF (244.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal S. K., MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996 Jun;16(6):1169–1177. doi: 10.1016/s0896-6273(00)80143-9. [DOI] [PubMed] [Google Scholar]
  2. Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J. 1994 Apr;66(4):1011–1021. doi: 10.1016/S0006-3495(94)80882-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen D., Xu L., Tripathy A., Meissner G., Eisenberg B. Permeation through the calcium release channel of cardiac muscle. Biophys J. 1997 Sep;73(3):1337–1354. doi: 10.1016/S0006-3495(97)78167-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Condat C. A., Jäckle J. Closed-time distribution of ionic channels. Analytical solution to a one-dimensional defect-diffusion model. Biophys J. 1989 May;55(5):915–925. doi: 10.1016/S0006-3495(89)82890-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conti F., Stühmer W. Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J. 1989;17(2):53–59. doi: 10.1007/BF00257102. [DOI] [PubMed] [Google Scholar]
  6. Crouzy S. C., Sigworth F. J. Fluctuations in ion channel gating currents. Analysis of nonstationary shot noise. Biophys J. 1993 Jan;64(1):68–76. doi: 10.1016/S0006-3495(93)81341-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forster I. C., Greeff N. G. The early phase of sodium channel gating current in the squid giant axon. Characteristics of a fast component of displacement charge movement. Eur Biophys J. 1992;21(2):99–116. doi: 10.1007/BF00185425. [DOI] [PubMed] [Google Scholar]
  8. Frehland E. Current noise around steady states in discrete transport systems. Biophys Chem. 1978 Jul;8(3):255–265. doi: 10.1016/0301-4622(78)87007-0. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horn R., Korn S. J. Model selection: reliability and bias. Biophys J. 1989 Feb;55(2):379–381. doi: 10.1016/S0006-3495(89)82816-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levitt D. G. Continuum model of voltage-dependent gating. Macroscopic conductance, gating current, and single-channel behavior. Biophys J. 1989 Mar;55(3):489–498. doi: 10.1016/S0006-3495(89)82842-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liebovitch L. S. Testing fractal and Markov models of ion channel kinetics. Biophys J. 1989 Feb;55(2):373–377. doi: 10.1016/S0006-3495(89)82815-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Läuger P. Internal motions in proteins and gating kinetics of ionic channels. Biophys J. 1988 Jun;53(6):877–884. doi: 10.1016/S0006-3495(88)83168-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McManus O. B., Spivak C. E., Blatz A. L., Weiss D. S., Magleby K. L. Fractal models, Markov models, and channel kinetics. Biophys J. 1989 Feb;55(2):383–385. doi: 10.1016/S0006-3495(89)82817-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McManus O. B., Weiss D. S., Spivak C. E., Blatz A. L., Magleby K. L. Fractal models are inadequate for the kinetics of four different ion channels. Biophys J. 1988 Nov;54(5):859–870. doi: 10.1016/S0006-3495(88)83022-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Millhauser G. L., Salpeter E. E., Oswald R. E. Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1503–1507. doi: 10.1073/pnas.85.5.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schoppa N. E., McCormack K., Tanouye M. A., Sigworth F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 1992 Mar 27;255(5052):1712–1715. doi: 10.1126/science.1553560. [DOI] [PubMed] [Google Scholar]
  18. Schoppa N. E., Sigworth F. J. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J Gen Physiol. 1998 Feb;111(2):313–342. doi: 10.1085/jgp.111.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seoh S. A., Sigg D., Papazian D. M., Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 1996 Jun;16(6):1159–1167. doi: 10.1016/s0896-6273(00)80142-7. [DOI] [PubMed] [Google Scholar]
  20. Shapiro B. E., Qian H. A quantitative analysis of single protein-ligand complex separation with the atomic force microscope. Biophys Chem. 1997 Sep 1;67(1-3):211–219. doi: 10.1016/s0301-4622(97)00045-8. [DOI] [PubMed] [Google Scholar]
  21. Sigg D., Bezanilla F. Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. J Gen Physiol. 1997 Jan;109(1):27–39. doi: 10.1085/jgp.109.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sigg D., Stefani E., Bezanilla F. Gating current noise produced by elementary transitions in Shaker potassium channels. Science. 1994 Apr 22;264(5158):578–582. doi: 10.1126/science.8160016. [DOI] [PubMed] [Google Scholar]
  23. Sigworth F. J. Voltage gating of ion channels. Q Rev Biophys. 1994 Feb;27(1):1–40. doi: 10.1017/s0033583500002894. [DOI] [PubMed] [Google Scholar]
  24. Starace D. M., Stefani E., Bezanilla F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron. 1997 Dec;19(6):1319–1327. doi: 10.1016/s0896-6273(00)80422-5. [DOI] [PubMed] [Google Scholar]
  25. Zagotta W. N., Hoshi T., Aldrich R. W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol. 1994 Feb;103(2):321–362. doi: 10.1085/jgp.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES