Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):804–813. doi: 10.1016/S0006-3495(99)77244-9

Meningococcal PorA/C1, a channel that combines high conductance and high selectivity.

J Song 1, C A Minetti 1, M S Blake 1, M Colombini 1
PMCID: PMC1300082  PMID: 9929482

Abstract

Class 1 porins (PorA/C1) from Neisseria meningitidis achieve both high selectivity and high conductance. The channel is highly selective (24:1 Na+ over Cl-), suggesting a highly negatively charged selectivity filter. The trimeric nature of PorA/C1 accounts for part of the enormous conductance in 200 mM NaCl (0.97nS). However, the currents that can be achieved exceed the simple infinite-sink calculation for a pore 0.7 nm in radius (estimated from nonelectrolyte permeability). The conductance is linear with salt activity from 20 mM to 2.0 M NaCl with no sign of saturation at low salt. Impermeant polymers reduce the conductance in a manner consistent with their ability to reduce bulk conductivity. Extrapolating from the known structure of homologous porins, the selectivity filter is likely to be small and localized. If small and highly negatively charged ( approximately 9 charges), the predicted conductance would be an order of magnitude higher than that observed. The rate at which ions reach the selectivity filter seems to limit overall ionic flux. PorA/C1 rectifies strongly, and this rectification can be accounted for by calculated differences in the voltage and concentration profiles in the access regions. Thus, it appears that the conductance of this channel is determined by the access resistance and the selectivity by a highly-conductive filter.

Full Text

The Full Text of this article is available as a PDF (187.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R., Schmid A., Hancock R. E. Ion selectivity of gram-negative bacterial porins. J Bacteriol. 1985 May;162(2):722–727. doi: 10.1128/jb.162.2.722-727.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blake M. S., Gotschlich E. C. Gonococcal membrane proteins: speculation on their role in pathogenesis. Prog Allergy. 1983;33:298–313. [PubMed] [Google Scholar]
  3. Colombini M. Characterization of channels isolated from plant mitochondria. Methods Enzymol. 1987;148:465–475. doi: 10.1016/0076-6879(87)48045-2. [DOI] [PubMed] [Google Scholar]
  4. Guttormsen H. K., Wetzler L. M., Naess A. Humoral immune response to the class 3 outer membrane protein during the course of meningococcal disease. Infect Immun. 1993 Nov;61(11):4734–4742. doi: 10.1128/iai.61.11.4734-4742.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall J. E. Access resistance of a small circular pore. J Gen Physiol. 1975 Oct;66(4):531–532. doi: 10.1085/jgp.66.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jeanteur D., Lakey J. H., Pattus F. The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol. 1991 Sep;5(9):2153–2164. doi: 10.1111/j.1365-2958.1991.tb02145.x. [DOI] [PubMed] [Google Scholar]
  7. Mach H., Middaugh C. R., Lewis R. V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992 Jan;200(1):74–80. doi: 10.1016/0003-2697(92)90279-g. [DOI] [PubMed] [Google Scholar]
  8. Minetti C. A., Tai J. Y., Blake M. S., Pullen J. K., Liang S. M., Remeta D. P. Structural and functional characterization of a recombinant PorB class 2 protein from Neisseria meningitidis. Conformational stability and porin activity. J Biol Chem. 1997 Apr 18;272(16):10710–10720. doi: 10.1074/jbc.272.16.10710. [DOI] [PubMed] [Google Scholar]
  9. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nikaido H., Nikaido K., Harayama S. Identification and characterization of porins in Pseudomonas aeruginosa. J Biol Chem. 1991 Jan 15;266(2):770–779. [PubMed] [Google Scholar]
  11. Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969 Mar 1;221(5183):844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]
  12. Porat N., Apicella M. A., Blake M. S. A lipooligosaccharide-binding site on HepG2 cells similar to the gonococcal opacity-associated surface protein Opa. Infect Immun. 1995 Jun;63(6):2164–2172. doi: 10.1128/iai.63.6.2164-2172.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  14. Sansom M. S., Kerr I. D. Transbilayer pores formed by beta-barrels: molecular modeling of pore structures and properties. Biophys J. 1995 Oct;69(4):1334–1343. doi: 10.1016/S0006-3495(95)80000-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wetzler L. M., Blake M. S., Gotschlich E. C. Characterization and specificity of antibodies to protein I of Neisseria gonorrhoeae produced by injection with various protein I-adjuvant preparations. J Exp Med. 1988 Nov 1;168(5):1883–1897. doi: 10.1084/jem.168.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van der Ley P., Heckels J. E., Virji M., Hoogerhout P., Poolman J. T. Topology of outer membrane porins in pathogenic Neisseria spp. Infect Immun. 1991 Sep;59(9):2963–2971. doi: 10.1128/iai.59.9.2963-2971.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES