Abstract
Over 20 different missense mutations in the alpha subunit of the adult skeletal muscle Na channel have been identified in families with either myotonia (muscle stiffness) or periodic paralysis, or both. The V445M mutation was recently found in a family with myotonia but no weakness. This mutation in transmembrane segment IS6 is novel because no other disease-associated mutations are in domain I. Na currents were recorded from V445M and wild-type channels transiently expressed in human embryonic kidney cells. In common with other myotonic mutants studied to date, fast gating behavior was altered by V445M in a manner predicted to increase excitability: an impairment of fast inactivation increased the persistent Na current at 10 ms and activation had a hyperpolarized shift (4 mV). In contrast, slow inactivation was enhanced by V445M due to both a slower recovery (10 mV left shift in beta(V)) and an accelerated entry rate (1.6-fold). Our results provide additional evidence that IS6 is crucial for slow inactivation and show that enhanced slow inactivation cannot prevent myotonia, whereas previous studies have shown that disrupted slow inactivation predisposes to episodic paralysis.
Full Text
The Full Text of this article is available as a PDF (112.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerman M. J. The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc. 1998 Mar;73(3):250–269. doi: 10.4065/73.3.250. [DOI] [PubMed] [Google Scholar]
- Almers W., Stanfield P. R., Stühmer W. Slow changes in currents through sodium channels in frog muscle membrane. J Physiol. 1983 Jun;339:253–271. doi: 10.1113/jphysiol.1983.sp014715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boland L. M., Jurman M. E., Yellen G. Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys J. 1994 Mar;66(3 Pt 1):694–699. doi: 10.1016/s0006-3495(94)80843-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannon S. C., Brown R. H., Jr, Corey D. P. Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J. 1993 Jul;65(1):270–288. doi: 10.1016/S0006-3495(93)81045-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannon S. C. From mutation to myotonia in sodium channel disorders. Neuromuscul Disord. 1997 Jun;7(4):241–249. doi: 10.1016/s0960-8966(97)00430-6. [DOI] [PubMed] [Google Scholar]
- Cannon S. C. Slow inactivation of sodium channels: more than just a laboratory curiosity. Biophys J. 1996 Jul;71(1):5–7. doi: 10.1016/S0006-3495(96)79203-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Meves H. Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J Physiol. 1970 Dec;211(3):707–728. doi: 10.1113/jphysiol.1970.sp009300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummins T. R., Zhou J., Sigworth F. J., Ukomadu C., Stephan M., Ptácek L. J., Agnew W. S. Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron. 1993 Apr;10(4):667–678. doi: 10.1016/0896-6273(93)90168-q. [DOI] [PubMed] [Google Scholar]
- Featherstone D. E., Richmond J. E., Ruben P. C. Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys J. 1996 Dec;71(6):3098–3109. doi: 10.1016/S0006-3495(96)79504-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleig A., Fitch J. M., Goldin A. L., Rayner M. D., Starkus J. G., Ruben P. C. Point mutations in IIS4 alter activation and inactivation of rat brain IIA Na channels in Xenopus oocyte macropatches. Pflugers Arch. 1994 Jul;427(5-6):406–413. doi: 10.1007/BF00374254. [DOI] [PubMed] [Google Scholar]
- George A. L., Jr, Komisarof J., Kallen R. G., Barchi R. L. Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann Neurol. 1992 Feb;31(2):131–137. doi: 10.1002/ana.410310203. [DOI] [PubMed] [Google Scholar]
- Green D. S., George A. L., Jr, Cannon S. C. Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. J Physiol. 1998 Aug 1;510(Pt 3):685–694. doi: 10.1111/j.1469-7793.1998.685bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayward L. J., Brown R. H., Jr, Cannon S. C. Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. J Gen Physiol. 1996 May;107(5):559–576. doi: 10.1085/jgp.107.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayward L. J., Brown R. H., Jr, Cannon S. C. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys J. 1997 Mar;72(3):1204–1219. doi: 10.1016/S0006-3495(97)78768-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
- Jurman M. E., Boland L. M., Liu Y., Yellen G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 1994 Nov;17(5):876–881. [PubMed] [Google Scholar]
- McClatchey A. I., Cannon S. C., Slaugenhaupt S. A., Gusella J. F. The cloning and expression of a sodium channel beta 1-subunit cDNA from human brain. Hum Mol Genet. 1993 Jun;2(6):745–749. doi: 10.1093/hmg/2.6.745. [DOI] [PubMed] [Google Scholar]
- Mitrović N., George A. L., Jr, Lerche H., Wagner S., Fahlke C., Lehmann-Horn F. Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J Physiol. 1995 Aug 15;487(1):107–114. doi: 10.1113/jphysiol.1995.sp020864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plassart-Schiess E., Lhuillier L., George A. L., Jr, Fontaine B., Tabti N. Functional expression of the Ile693Thr Na+ channel mutation associated with paramyotonia congenita in a human cell line. J Physiol. 1998 Mar 15;507(Pt 3):721–727. doi: 10.1111/j.1469-7793.1998.721bs.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richmond J. E., Featherstone D. E., Ruben P. C. Human Na+ channel fast and slow inactivation in paramyotonia congenita mutants expressed in Xenopus laevis oocytes. J Physiol. 1997 Mar 15;499(Pt 3):589–600. doi: 10.1113/jphysiol.1997.sp021952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richmond J. E., VanDeCarr D., Featherstone D. E., George A. L., Jr, Ruben P. C. Defective fast inactivation recovery and deactivation account for sodium channel myotonia in the I1160V mutant. Biophys J. 1997 Oct;73(4):1896–1903. doi: 10.1016/S0006-3495(97)78220-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld J., Sloan-Brown K., George A. L., Jr A novel muscle sodium channel mutation causes painful congenital myotonia. Ann Neurol. 1997 Nov;42(5):811–814. doi: 10.1002/ana.410420520. [DOI] [PubMed] [Google Scholar]
- Ruben P. C., Starkus J. G., Rayner M. D. Steady-state availability of sodium channels. Interactions between activation and slow inactivation. Biophys J. 1992 Apr;61(4):941–955. doi: 10.1016/S0006-3495(92)81901-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudy B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol. 1978 Oct;283:1–21. doi: 10.1113/jphysiol.1978.sp012485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruff R. L., Simoncini L., Stühmer W. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve. 1988 May;11(5):502–510. doi: 10.1002/mus.880110514. [DOI] [PubMed] [Google Scholar]
- Ruff R. L. Slow Na+ channel inactivation must be disrupted to evoke prolonged depolarization-induced paralysis. Biophys J. 1994 Feb;66(2 Pt 1):542–542. doi: 10.1016/s0006-3495(94)80807-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Townsend C., Horn R. Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. J Gen Physiol. 1997 Jul;110(1):23–33. doi: 10.1085/jgp.110.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vedantham V., Cannon S. C. Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels. J Gen Physiol. 1998 Jan;111(1):83–93. doi: 10.1085/jgp.111.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S. Y., Wang G. K. A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys J. 1997 Apr;72(4):1633–1640. doi: 10.1016/S0006-3495(97)78809-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J. F., Ellinor P. T., Aldrich R. W., Tsien R. W. Molecular determinants of voltage-dependent inactivation in calcium channels. Nature. 1994 Nov 3;372(6501):97–100. doi: 10.1038/372097a0. [DOI] [PubMed] [Google Scholar]
