Abstract
A stopped-flow spectrofluorometer equipped with a rapid scanning emission monochromator was utilized to monitor the binding of adriamycin to phospholipid liposomes. The latter process is evident as a decrease in fluorescence emission from a trace amount of a pyrene-labeled phospholipid analog (PPDPG, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phospho-rac-++ +glyce rol) used as a donor for resonance energy transfer to adriamycin. For zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, fluorescence decay was slow, with a half-time t1/2 of approximately 2 s. When the mole fraction of the acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), was increased to XPG >/= 0.04, the decay of fluorescence became double exponential, and an additional, significantly faster process with t1/2 in the range between 2 and 4 ms was observed. Subsequently, as XPG was increased further, the amplitude of the fast process increased, whereas the slower process was attenuated, its t1/2 increasing to 20 s. Increasing [NaCl] above 50 mM or [CaCl2] above 150 microM abolished the fast component, thus confirming this interaction to be electrostatic. The critical dependence of the fast component on XPG allows the use of this process to probe the organization of acidic phospholipids in liposomes. This was demonstrated with 1, 2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes incorporating PPDPG (XPPDPG = 0.03), i.e., conditions where XPG in fluid bilayers is below the required threshold yielding the fast component. In keeping with the presence of clusters of PPDPG, the fast component was observed for gel-state liposomes. At approximately 34 degreesC (i.e., 6 degrees below Tm), the slower fluorescence decay also appeared, and it was seen throughout the main phase transition region as well as in the liquid-crystalline state. The fluorescence decay behavior at temperatures below, above, and at the main phase transition temperature is interpreted in terms of thermal density fluctuations and an intermediate state between gel and liquid-crystalline states being involved in the phospholipid main phase transition. This is the first observation of a cluster constituted by acidic phospholipids controlling the membrane association of a drug.
Full Text
The Full Text of this article is available as a PDF (277.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anand S., Verma H., Kumar L., Singh N. Induction of apoptosis in chronic myelogenous leukemia lymphocytes by hydroxyurea and adriamycin. Cancer Lett. 1995 Jan 6;88(1):101–105. doi: 10.1016/0304-3835(94)03617-r. [DOI] [PubMed] [Google Scholar]
- Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
- Bryant G., Wolfe J. Can hydration forces induce lateral phase separations in lamellar phases? Eur Biophys J. 1989;16(6):369–374. doi: 10.1007/BF00257886. [DOI] [PubMed] [Google Scholar]
- Chong P. L., Tang D., Sugar I. P. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures. Biophys J. 1994 Jun;66(6):2029–2038. doi: 10.1016/S0006-3495(94)80996-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Constantinides P. P., Inouchi N., Tritton T. R., Sartorelli A. C., Sturtevant J. M. A scanning calorimetric study of the interaction of anthracyclines with neutral and acidic phospholipids alone and in binary mixtures. J Biol Chem. 1986 Aug 5;261(22):10196–10203. [PubMed] [Google Scholar]
- Doroshow J. H. Doxorubicin-induced cardiac toxicity. N Engl J Med. 1991 Mar 21;324(12):843–845. doi: 10.1056/NEJM199103213241210. [DOI] [PubMed] [Google Scholar]
- Drake J. M., Klafter J., Levitz P. Chemical and biological microstructures as probed by dynamic processes. Science. 1991 Mar 29;251(5001):1574–1579. doi: 10.1126/science.2011737. [DOI] [PubMed] [Google Scholar]
- Duarte-Karim M., Ruysschaert J. M., Hildebrand J. Affinity of adriamycin to phospholipids. A possible explanation for cardiac mitochondrial lesions. Biochem Biophys Res Commun. 1976 Jul 26;71(2):658–663. doi: 10.1016/0006-291x(76)90838-x. [DOI] [PubMed] [Google Scholar]
- Dumas F., Sperotto M. M., Lebrun M. C., Tocanne J. F., Mouritsen O. G. Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophys J. 1997 Oct;73(4):1940–1953. doi: 10.1016/S0006-3495(97)78225-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dupou-Cézanne L., Sautereau A. M., Tocanne J. F. Localization of adriamycin in model and natural membranes. Influence of lipid molecular packing. Eur J Biochem. 1989 May 15;181(3):695–702. doi: 10.1111/j.1432-1033.1989.tb14779.x. [DOI] [PubMed] [Google Scholar]
- Eklund K. K., Kinnunen P. K. Effects of polyamines on the thermotropic behaviour of dipalmitoylphosphatidylglycerol. Chem Phys Lipids. 1986 Jan;39(1-2):109–117. doi: 10.1016/0009-3084(86)90104-0. [DOI] [PubMed] [Google Scholar]
- Eklund K. K., Takkunen J. E., Kinnunen P. K. Cation-induced aggregation of acidic phospholipid vesicles: the role of fatty acid unsaturation and cholesterol. Chem Phys Lipids. 1991 Jan-Feb;57(1):59–66. doi: 10.1016/0009-3084(91)90049-h. [DOI] [PubMed] [Google Scholar]
- Eklund K. K., Vuorinen J., Mikkola J., Virtanen J. A., Kinnunen P. K. Ca2+-induced lateral phase separation in phosphatidic acid/phosphatidylcholine monolayers as revealed by fluorescence microscopy. Biochemistry. 1988 May 3;27(9):3433–3437. doi: 10.1021/bi00409a046. [DOI] [PubMed] [Google Scholar]
- Fiallo M. M., Garnier-Suillerot A. Interaction of adriamycin with cardiolipin-containing vesicles. Evidence of an embedded site for the dihydroanthraquinone moiety. Biochim Biophys Acta. 1986 Jan 16;854(1):143–146. doi: 10.1016/0005-2736(86)90074-x. [DOI] [PubMed] [Google Scholar]
- Galla H. J., Sackmann E. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study. Biochim Biophys Acta. 1975 Sep 2;401(3):509–529. doi: 10.1016/0005-2736(75)90249-7. [DOI] [PubMed] [Google Scholar]
- Gascard P., Sauvage M., Sulpice J. C., Giraud F. Characterization of structural and functional phosphoinositide domains in human erythrocyte membranes. Biochemistry. 1993 Jun 15;32(23):5941–5948. doi: 10.1021/bi00074a004. [DOI] [PubMed] [Google Scholar]
- Goldman R., Facchinetti T., Bach D., Raz A., Shinitzky M. A differential interaction of daunomycin, adriamycin and their derivatives with human erythrocytes and phospholipid bilayers. Biochim Biophys Acta. 1978 Sep 22;512(2):254–269. doi: 10.1016/0005-2736(78)90251-1. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Brasseur R., Ruysschaert J. M. Adriamycin inactivates cytochrome c oxidase by exclusion of the enzyme from its cardiolipin essential environment. Biochem Biophys Res Commun. 1982 Jan 15;104(1):314–320. doi: 10.1016/0006-291x(82)91976-3. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol. 1980 Nov 1;29(21):3003–3010. doi: 10.1016/0006-2952(80)90050-7. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a specific complex between adriamycin and negatively-charged phospholipids. Biochim Biophys Acta. 1980 Mar 27;597(1):1–14. doi: 10.1016/0005-2736(80)90145-5. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Huart P., Brasseur R., Ruysschaert J. M. Mechanism of inhibition of mitochondrial enzymatic complex I-III by adriamycin derivatives. Biochim Biophys Acta. 1986 Sep 25;861(1):83–94. doi: 10.1016/0005-2736(86)90374-3. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Ruysschaert J. M. Anthracycline glycoside-membrane interactions. Biochim Biophys Acta. 1984 Sep 3;779(3):271–288. doi: 10.1016/0304-4157(84)90013-3. [DOI] [PubMed] [Google Scholar]
- Hartmann W., Galla H. J., Sackmann E. Direct evidence of charge-induced lipid domain structure in model membranes. FEBS Lett. 1977 Jun 15;78(2):169–172. doi: 10.1016/0014-5793(77)80298-6. [DOI] [PubMed] [Google Scholar]
- Henry N., Fantine E. O., Bolard J., Garnier-Suillerot A. Interaction of adriamycin with negatively charged model membranes: evidence of two types of binding sites. Biochemistry. 1985 Dec 3;24(25):7085–7092. doi: 10.1021/bi00346a010. [DOI] [PubMed] [Google Scholar]
- Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
- Hong-wei S., McConnell H. Phase separations in phospholipd membranes. Biochemistry. 1975 Feb 25;14(4):847–854. doi: 10.1021/bi00675a032. [DOI] [PubMed] [Google Scholar]
- Hresko R. C., Sugár I. P., Barenholz Y., Thompson T. E. Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: fluorescence phase and modulation study. Biochemistry. 1986 Jul 1;25(13):3813–3823. doi: 10.1021/bi00361a012. [DOI] [PubMed] [Google Scholar]
- Huart P., Brasseur R., Goormaghtigh E., Ruysschaert J. M. Antimitotics induce cardiolipin cluster formation. Possible role in mitochondrial enzyme inactivation. Biochim Biophys Acta. 1984 Jun 15;799(2):199–202. doi: 10.1016/0304-4165(84)90296-4. [DOI] [PubMed] [Google Scholar]
- Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
- Janmey P. A., Chaponnier C. Medical aspects of the actin cytoskeleton. Curr Opin Cell Biol. 1995 Feb;7(1):111–117. doi: 10.1016/0955-0674(95)80052-2. [DOI] [PubMed] [Google Scholar]
- Jones M. E., Lentz B. R. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding. Biochemistry. 1986 Feb 11;25(3):567–574. doi: 10.1021/bi00351a009. [DOI] [PubMed] [Google Scholar]
- Karczmar G. S., Tritton T. R. The interaction of adriamycin with small unilamellar vesicle liposomes. A fluorescence study. Biochim Biophys Acta. 1979 Nov 2;557(2):306–319. doi: 10.1016/0005-2736(79)90329-8. [DOI] [PubMed] [Google Scholar]
- Kinnunen P. K., Kõiv A., Lehtonen J. Y., Rytömaa M., Mustonen P. Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids. 1994 Sep 6;73(1-2):181–207. doi: 10.1016/0009-3084(94)90181-3. [DOI] [PubMed] [Google Scholar]
- Kinnunen P. K. On the principles of functional ordering in biological membranes. Chem Phys Lipids. 1991 Mar;57(2-3):375–399. doi: 10.1016/0009-3084(91)90087-r. [DOI] [PubMed] [Google Scholar]
- Kinnunen P. K. On the principles of functional ordering in biological membranes. Chem Phys Lipids. 1991 Mar;57(2-3):375–399. doi: 10.1016/0009-3084(91)90087-r. [DOI] [PubMed] [Google Scholar]
- Knoll W., Schmidt G., Rötzer H., Henkel T., Pfeiffer W., Sackmann E., Mittler-Neher S., Spinke J. Lateral order in binary lipid alloys and its coupling to membrane functions. Chem Phys Lipids. 1991 Mar;57(2-3):363–374. doi: 10.1016/0009-3084(91)90086-q. [DOI] [PubMed] [Google Scholar]
- Kõiv A., Mustonen P., Kinnunen P. K. Differential scanning calorimetry study on the binding of nucleic acids to dimyristoylphosphatidylcholine-sphingosine liposomes. Chem Phys Lipids. 1994 Mar 31;70(1):1–10. doi: 10.1016/0009-3084(94)90042-6. [DOI] [PubMed] [Google Scholar]
- Kõiv A., Mustonen P., Kinnunen P. K. Differential scanning calorimetry study on the binding of nucleic acids to dimyristoylphosphatidylcholine-sphingosine liposomes. Chem Phys Lipids. 1994 Mar 31;70(1):1–10. doi: 10.1016/0009-3084(94)90042-6. [DOI] [PubMed] [Google Scholar]
- Lee K. Y., Klingler J. F., McConnell H. M. Electric field-induced concentration gradients in lipid monolayers. Science. 1994 Feb 4;263(5147):655–658. doi: 10.1126/science.8303272. [DOI] [PubMed] [Google Scholar]
- Lee K. Y., McConnell H. M. Effect of electric field gradients on lipid monolayer membranes. Biophys J. 1995 May;68(5):1740–1751. doi: 10.1016/S0006-3495(95)80351-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehtonen J. Y., Holopainen J. M., Kinnunen P. K. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Biophys J. 1996 Apr;70(4):1753–1760. doi: 10.1016/S0006-3495(96)79738-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehtonen J. Y., Kinnunen P. K. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease. Biophys J. 1997 Mar;72(3):1247–1257. doi: 10.1016/S0006-3495(97)78771-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehtonen J. Y., Kinnunen P. K. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys J. 1995 Feb;68(2):525–535. doi: 10.1016/S0006-3495(95)80214-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
- Ling Y. H., Priebe W., Perez-Soler R. Apoptosis induced by anthracycline antibiotics in P388 parent and multidrug-resistant cells. Cancer Res. 1993 Apr 15;53(8):1845–1852. [PubMed] [Google Scholar]
- Luan P., Glaser M. Formation of membrane domains by the envelope proteins of vesicular stomatitis virus. Biochemistry. 1994 Apr 19;33(15):4483–4489. doi: 10.1021/bi00181a007. [DOI] [PubMed] [Google Scholar]
- MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
- McMullen T. P., Lewis R. N., McElhaney R. N. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993 Jan 19;32(2):516–522. doi: 10.1021/bi00053a016. [DOI] [PubMed] [Google Scholar]
- Momsen W. E., Momsen M. M., Brockman H. L. Lipid structural reorganization induced by the pancreatic lipase cofactor, procolipase. Biochemistry. 1995 May 30;34(21):7271–7281. doi: 10.1021/bi00021a044. [DOI] [PubMed] [Google Scholar]
- Mou J., Yang J., Huang C., Shao Z. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry. 1994 Aug 23;33(33):9981–9985. doi: 10.1021/bi00199a022. [DOI] [PubMed] [Google Scholar]
- Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouritsen O. G. Theoretical models of phospholipid phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):179–194. doi: 10.1016/0009-3084(91)90075-m. [DOI] [PubMed] [Google Scholar]
- Mustonen P., Kinnunen P. K. Activation of phospholipase A2 by adriamycin in vitro. Role of drug-lipid interactions. J Biol Chem. 1991 Apr 5;266(10):6302–6307. [PubMed] [Google Scholar]
- Mustonen P., Kinnunen P. K. On the reversal by deoxyribonucleic acid of the binding of adriamycin to cardiolipin-containing liposomes. J Biol Chem. 1993 Jan 15;268(2):1074–1080. [PubMed] [Google Scholar]
- Mustonen P., Virtanen J. A., Somerharju P. J., Kinnunen P. K. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry. 1987 Jun 2;26(11):2991–2997. doi: 10.1021/bi00385a006. [DOI] [PubMed] [Google Scholar]
- Mustonen P., Virtanen J. A., Somerharju P. J., Kinnunen P. K. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry. 1987 Jun 2;26(11):2991–2997. doi: 10.1021/bi00385a006. [DOI] [PubMed] [Google Scholar]
- Müller I., Jenner A., Bruchelt G., Niethammer D., Halliwell B. Effect of concentration on the cytotoxic mechanism of doxorubicin--apoptosis and oxidative DNA damage. Biochem Biophys Res Commun. 1997 Jan 13;230(2):254–257. doi: 10.1006/bbrc.1996.5898. [DOI] [PubMed] [Google Scholar]
- Neubig R. R. Membrane organization in G-protein mechanisms. FASEB J. 1994 Sep;8(12):939–946. doi: 10.1096/fasebj.8.12.8088459. [DOI] [PubMed] [Google Scholar]
- Nicolay K., Sautereau A. M., Tocanne J. F., Brasseur R., Huart P., Ruysschaert J. M., de Kruijff B. A comparative model membrane study on structural effects of membrane-active positively charged anti-tumor drugs. Biochim Biophys Acta. 1988 May 24;940(2):197–208. doi: 10.1016/0005-2736(88)90195-2. [DOI] [PubMed] [Google Scholar]
- Nicolay K., de Kruijff B. Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV. Biochim Biophys Acta. 1987 Jul 22;892(3):320–330. doi: 10.1016/0005-2728(87)90236-2. [DOI] [PubMed] [Google Scholar]
- Praet M., Defrise-Quertain F., Ruysschaert J. M. Comparison of adriamycin and derivatives uptake into large unilamellar lipid vesicles in response to a membrane potential. Biochim Biophys Acta. 1993 Jun 5;1148(2):342–350. doi: 10.1016/0005-2736(93)90148-s. [DOI] [PubMed] [Google Scholar]
- Rodgers W., Glaser M. Characterization of lipid domains in erythrocyte membranes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1364–1368. doi: 10.1073/pnas.88.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenoff S. H., Olson H. M., Young D. M., Bostick F., Young R. C. Adriamycin-induced cardiac damage in the mouse: a small-animal model of cardiotoxicity. J Natl Cancer Inst. 1975 Jul;55(1):191–194. doi: 10.1093/jnci/55.1.191. [DOI] [PubMed] [Google Scholar]
- Rowe E. S. Induction of lateral phase separations in binary lipid mixtures by alcohol. Biochemistry. 1987 Jan 13;26(1):46–51. doi: 10.1021/bi00375a007. [DOI] [PubMed] [Google Scholar]
- Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
- Skladanowski A., Konopa J. Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumour cells. Biochem Pharmacol. 1993 Aug 3;46(3):375–382. doi: 10.1016/0006-2952(93)90512-u. [DOI] [PubMed] [Google Scholar]
- Solem L. E., Heller L. J., Wallace K. B. Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol. 1996 May;28(5):1023–1032. doi: 10.1006/jmcc.1996.0095. [DOI] [PubMed] [Google Scholar]
- Somerharju P. J., Virtanen J. A., Eklund K. K., Vainio P., Kinnunen P. K. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry. 1985 May 21;24(11):2773–2781. doi: 10.1021/bi00332a027. [DOI] [PubMed] [Google Scholar]
- Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
- Subramanian M., Jutila A., Kinnunen P. K. Binding and dissociation of cytochrome c to and from membranes containing acidic phospholipids. Biochemistry. 1998 Feb 3;37(5):1394–1402. doi: 10.1021/bi9716581. [DOI] [PubMed] [Google Scholar]
- Tang D., Chong P. L. E/M dips. Evidence for lipids regularly distributed into hexagonal super-lattices in pyrene-PC/DMPC binary mixtures at specific concentrations. Biophys J. 1992 Oct;63(4):903–910. doi: 10.1016/S0006-3495(92)81672-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang D., Wieb van der Meer B., Chen S. Y. Evidence for a regular distribution of cholesterol in phospholipid bilayers from diphenylhexatriene fluorescence. Biophys J. 1995 May;68(5):1944–1951. doi: 10.1016/S0006-3495(95)80371-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilcock C. P., Cullis P. R. The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR. Biochim Biophys Acta. 1981 Feb 20;641(1):189–201. doi: 10.1016/0005-2736(81)90583-6. [DOI] [PubMed] [Google Scholar]
- Tocanne J. F., Cézanne L., Lopez A., Piknova B., Schram V., Tournier J. F., Welby M. Lipid domains and lipid/protein interactions in biological membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):139–158. doi: 10.1016/0009-3084(94)90179-1. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J., Erecińska M., Chance B. Cytochrome c interaction with membranes. I. Use of a fluorescent chromophore in the study of cytochrome c interaction with artificial and mitochondrial membranes. Arch Biochem Biophys. 1973 Jan;154(1):219–229. doi: 10.1016/0003-9861(73)90052-0. [DOI] [PubMed] [Google Scholar]
- Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
- Welti R., Glaser M. Lipid domains in model and biological membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):121–137. doi: 10.1016/0009-3084(94)90178-3. [DOI] [PubMed] [Google Scholar]
- Zaleskis G., Berleth E., Verstovsek S., Ehrke M. J., Mihich E. Doxorubicin-induced DNA degradation in murine thymocytes. Mol Pharmacol. 1994 Nov;46(5):901–908. [PubMed] [Google Scholar]
- de Wolf F. A., Maliepaard M., van Dorsten F., Berghuis I., Nicolay K., de Kruijff B. Comparable interaction of doxorubicin with various acidic phospholipids results in changes of lipid order and dynamics. Biochim Biophys Acta. 1990 Nov 14;1096(1):67–80. doi: 10.1016/0925-4439(90)90014-g. [DOI] [PubMed] [Google Scholar]