Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Feb;76(2):908–915. doi: 10.1016/S0006-3495(99)77254-1

Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length.

B Ramstedt 1, J P Slotte 1
PMCID: PMC1300092  PMID: 9929492

Abstract

In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells.

Full Text

The Full Text of this article is available as a PDF (88.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barenholz Y., Thompson T. E. Sphingomyelins in bilayers and biological membranes. Biochim Biophys Acta. 1980 Sep 30;604(2):129–158. doi: 10.1016/0005-2736(80)90572-6. [DOI] [PubMed] [Google Scholar]
  2. Bhuvaneswaran C., Mitropoulos K. A. Effect of liposomal phospholipid composition on cholesterol transfer between microsomal and liposomal vesicles. Biochem J. 1986 Sep 15;238(3):647–652. doi: 10.1042/bj2380647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bittman R., Kasireddy C. R., Mattjus P., Slotte J. P. Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry. 1994 Oct 4;33(39):11776–11781. doi: 10.1021/bi00205a013. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A., London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 1997 Nov 7;240(1):1–7. doi: 10.1006/bbrc.1997.7575. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  6. Chapman D., Owens N. F., Phillips M. C., Walker D. A. Mixed monolayers of phospholipids and cholesterol. Biochim Biophys Acta. 1969;183(3):458–465. doi: 10.1016/0005-2736(69)90160-6. [DOI] [PubMed] [Google Scholar]
  7. Chatterjee S. Neutral sphingomyelinase increases the binding, internalization, and degradation of low density lipoproteins and synthesis of cholesteryl ester in cultured human fibroblasts. J Biol Chem. 1993 Feb 15;268(5):3401–3406. [PubMed] [Google Scholar]
  8. Cohen R., Barenholz Y., Gatt S., Dagan A. Preparation and characterization of well defined D-erythro sphingomyelins. Chem Phys Lipids. 1984 Oct;35(4):371–384. doi: 10.1016/0009-3084(84)90079-3. [DOI] [PubMed] [Google Scholar]
  9. Demel R. A., Bruckdorfer K. R., van Deenen L. L. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb + . Biochim Biophys Acta. 1972 Jan 17;255(1):321–330. doi: 10.1016/0005-2736(72)90031-4. [DOI] [PubMed] [Google Scholar]
  10. Ferraretto A., Pitto M., Palestini P., Masserini M. Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Biochemistry. 1997 Jul 29;36(30):9232–9236. doi: 10.1021/bi970428j. [DOI] [PubMed] [Google Scholar]
  11. Fugler L., Clejan S., Bittman R. Movement of cholesterol between vesicles prepared with different phospholipids or sizes. J Biol Chem. 1985 Apr 10;260(7):4098–4102. [PubMed] [Google Scholar]
  12. Gupta A. K., Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase activity and cholesterol biosynthesis in cell cultures. J Lipid Res. 1991 Jan;32(1):125–136. [PubMed] [Google Scholar]
  13. Kaluzny M. A., Duncan L. A., Merritt M. V., Epps D. E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985 Jan;26(1):135–140. [PubMed] [Google Scholar]
  14. Kan C. C., Ruan Z. S., Bittman R. Interaction of cholesterol with sphingomyelin in bilayer membranes: evidence that the hydroxy group of sphingomyelin does not modulate the rate of cholesterol exchange between vesicles. Biochemistry. 1991 Aug 6;30(31):7759–7766. doi: 10.1021/bi00245a013. [DOI] [PubMed] [Google Scholar]
  15. Lee A. G. Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim Biophys Acta. 1977 Nov 14;472(3-4):285–344. doi: 10.1016/0304-4157(77)90001-6. [DOI] [PubMed] [Google Scholar]
  16. Lund-Katz S., Laboda H. M., McLean L. R., Phillips M. C. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry. 1988 May 3;27(9):3416–3423. doi: 10.1021/bi00409a044. [DOI] [PubMed] [Google Scholar]
  17. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mattjus P., Slotte J. P. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem Phys Lipids. 1996 Jun 17;81(1):69–80. doi: 10.1016/0009-3084(96)02535-2. [DOI] [PubMed] [Google Scholar]
  19. McIntosh T. J., Simon S. A., Needham D., Huang C. H. Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry. 1992 Feb 25;31(7):2012–2020. doi: 10.1021/bi00122a017. [DOI] [PubMed] [Google Scholar]
  20. Needham D., Nunn R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990 Oct;58(4):997–1009. doi: 10.1016/S0006-3495(90)82444-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohvo H., Olsio C., Slotte J. P. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts. Biochim Biophys Acta. 1997 Nov 15;1349(2):131–141. doi: 10.1016/s0005-2760(97)00126-4. [DOI] [PubMed] [Google Scholar]
  22. Ohvo H., Slotte J. P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996 Jun 18;35(24):8018–8024. doi: 10.1021/bi9528816. [DOI] [PubMed] [Google Scholar]
  23. Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
  24. Pörn M. I., Ares M. P., Slotte J. P. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution. J Lipid Res. 1993 Aug;34(8):1385–1392. [PubMed] [Google Scholar]
  25. Pörn M. I., Tenhunen J., Slotte J. P. Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation. Biochim Biophys Acta. 1991 Jun 7;1093(1):7–12. doi: 10.1016/0167-4889(91)90131-g. [DOI] [PubMed] [Google Scholar]
  26. Schroeder F., Frolov A. A., Murphy E. J., Atshaves B. P., Jefferson J. R., Pu L., Wood W. G., Foxworth W. B., Kier A. B. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med. 1996 Nov;213(2):150–177. doi: 10.3181/00379727-213-44047. [DOI] [PubMed] [Google Scholar]
  27. Silvius J. R., del Giudice D., Lafleur M. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry. 1996 Dec 3;35(48):15198–15208. doi: 10.1021/bi9615506. [DOI] [PubMed] [Google Scholar]
  28. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  29. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Slotte J. P., Bierman E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988 Mar 15;250(3):653–658. doi: 10.1042/bj2500653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Slotte J. P. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear. Biochemistry. 1992 Jun 23;31(24):5472–5477. doi: 10.1021/bi00139a008. [DOI] [PubMed] [Google Scholar]
  32. Slotte J. P., Hedström G., Rannström S., Ekman S. Effects of sphingomyelin degradation on cell cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior. Biochim Biophys Acta. 1989 Oct 2;985(1):90–96. doi: 10.1016/0005-2736(89)90108-9. [DOI] [PubMed] [Google Scholar]
  33. Smaby J. M., Brockman H. L., Brown R. E. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation. Biochemistry. 1994 Aug 9;33(31):9135–9142. doi: 10.1021/bi00197a016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smaby J. M., Kulkarni V. S., Momsen M., Brown R. E. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys J. 1996 Feb;70(2):868–877. doi: 10.1016/S0006-3495(96)79629-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sripada P. K., Maulik P. R., Hamilton J. A., Shipley G. G. Partial synthesis and properties of a series of N-acyl sphingomyelins. J Lipid Res. 1987 Jun;28(6):710–718. [PubMed] [Google Scholar]
  36. Szolderits G., Daum G., Paltauf F., Hermetter A. Protein-catalyzed transport of ether phospholipids. Biochim Biophys Acta. 1991 Apr 2;1063(2):197–202. doi: 10.1016/0005-2736(91)90371-e. [DOI] [PubMed] [Google Scholar]
  37. Thomas P. D., Poznansky M. J. Cholesterol transfer between lipid vesicles. Effect of phospholipids and gangliosides. Biochem J. 1988 Apr 1;251(1):55–61. doi: 10.1042/bj2510055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Verger R., De Haas G. H. Enzyme reactions in a membrane model. 1. A new technique to study enzyme reactions in monolayers. Chem Phys Lipids. 1973 Feb;10(2):127–136. doi: 10.1016/0009-3084(73)90009-1. [DOI] [PubMed] [Google Scholar]
  39. Yancey P. G., Rodrigueza W. V., Kilsdonk E. P., Stoudt G. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux. J Biol Chem. 1996 Jul 5;271(27):16026–16034. doi: 10.1074/jbc.271.27.16026. [DOI] [PubMed] [Google Scholar]
  40. Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]
  41. Yeagle P. L. Cholesterol modulation of (Na+ + K+)-ATPase ATP hydrolyzing activity in the human erythrocyte. Biochim Biophys Acta. 1983 Jan 5;727(1):39–44. doi: 10.1016/0005-2736(83)90366-8. [DOI] [PubMed] [Google Scholar]
  42. Yeagle P. L., Young J. E. Factors contributing to the distribution of cholesterol among phospholipid vesicles. J Biol Chem. 1986 Jun 25;261(18):8175–8181. [PubMed] [Google Scholar]
  43. van Dijck P. W., Kaper A. J., Oonk H. A., de Gier J. Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study. Biochim Biophys Acta. 1977 Oct 3;470(1):58–69. doi: 10.1016/0005-2736(77)90061-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES