Abstract
Depth-dependent fluorescence quenching in membranes is playing an increasingly important role in the determination of the low resolution structure of membrane proteins. This paper presents a graphical way of visualizing membrane quenching caused by lipid-attached bromines or spin labels with the help of a depth-dependent fluorescence quenching profile. Two methods are presently available to extract information on membrane penetration from quenching: the parallax method (PM; ) and distribution analysis (DA; A. S. Biophys. J. 64:290a (Abstr.); A. S. Methods Enzymol. 278:462-473). Analysis of various experimental and simulated data by these two methods is presented. The effects of uncertainty in the local concentration of quenching lipids (due to protein shielding or nonideality in lipid mixing), the existence of multiple conformations of membrane-bound protein, incomplete binding, and uncertainty in the fluorescence in nonquenching lipid are described. Regardless of the analytical form of the quenching profile (Gaussian function for DA or truncated parabola for PM), it has three primary characteristics: position on the depth scale, area, and width. The most important result, not surprisingly, is that one needs three fitting parameters to describe the quenching. This will keep the measures of the quenching profile independent of each other resulting in the reduction of systematic errors in depth determination. This can be achieved by using either DA or a suggested modification of the PM that introduces a third parameter related to quenching efficiency. Because DA utilizes a smooth fitting function, it offers an advantage for the analysis of deeply penetrating probes, where the effects of transleaflet quenching should be considered.
Full Text
The Full Text of this article is available as a PDF (114.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams F. S., London E. Calibration of the parallax fluorescence quenching method for determination of membrane penetration depth: refinement and comparison of quenching by spin-labeled and brominated lipids. Biochemistry. 1992 Jun 16;31(23):5312–5322. doi: 10.1021/bi00138a010. [DOI] [PubMed] [Google Scholar]
- Abrams F. S., London E. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry. 1993 Oct 12;32(40):10826–10831. doi: 10.1021/bi00091a038. [DOI] [PubMed] [Google Scholar]
- Asuncion-Punzalan E., London E. Control of the depth of molecules within membranes by polar groups: determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching. Biochemistry. 1995 Sep 12;34(36):11460–11466. doi: 10.1021/bi00036a019. [DOI] [PubMed] [Google Scholar]
- Berkhout T. A., Rietveld A., de Kruijff B. Preferential lipid association and mode of penetration of apocytochrome c in mixed model membranes as monitored by tryptophanyl fluorescence quenching using brominated phospholipids. Biochim Biophys Acta. 1987 Feb 12;897(1):1–4. doi: 10.1016/0005-2736(87)90308-7. [DOI] [PubMed] [Google Scholar]
- Bolen E. J., Holloway P. W. Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry. 1990 Oct 16;29(41):9638–9643. doi: 10.1021/bi00493a019. [DOI] [PubMed] [Google Scholar]
- Castanho M., Prieto M. Filipin fluorescence quenching by spin-labeled probes: studies in aqueous solution and in a membrane model system. Biophys J. 1995 Jul;69(1):155–168. doi: 10.1016/S0006-3495(95)79886-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987 Jan 13;26(1):39–45. doi: 10.1021/bi00375a006. [DOI] [PubMed] [Google Scholar]
- Chung L. A., Lear J. D., DeGrado W. F. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry. 1992 Jul 21;31(28):6608–6616. doi: 10.1021/bi00143a035. [DOI] [PubMed] [Google Scholar]
- Clague M. J., Knutson J. R., Blumenthal R., Herrmann A. Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: a fluorescence study. Biochemistry. 1991 Jun 4;30(22):5491–5497. doi: 10.1021/bi00236a023. [DOI] [PubMed] [Google Scholar]
- Everett J., Zlotnick A., Tennyson J., Holloway P. W. Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine. J Biol Chem. 1986 May 25;261(15):6725–6729. [PubMed] [Google Scholar]
- González-Mañas J. M., Lakey J. H., Pattus F. Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry. 1992 Aug 18;31(32):7294–7300. doi: 10.1021/bi00147a013. [DOI] [PubMed] [Google Scholar]
- Jones J. D., Gierasch L. M. Effect of charged residue substitutions on the membrane-interactive properties of signal sequences of the Escherichia coli LamB protein. Biophys J. 1994 Oct;67(4):1534–1545. doi: 10.1016/S0006-3495(94)80627-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachel K., Asuncion-Punzalan E., London E. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry. 1995 Nov 28;34(47):15475–15479. doi: 10.1021/bi00047a012. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S. Distribution analysis of depth-dependent fluorescence quenching in membranes: a practical guide. Methods Enzymol. 1997;278:462–473. doi: 10.1016/s0076-6879(97)78024-8. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Holloway P. W. Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions. Biophys J. 1995 Aug;69(2):506–517. doi: 10.1016/S0006-3495(95)79924-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladokhin A. S., Holloway P. W. Fluorescence quenching study of melittin-membrane interactions. Ukr Biokhim Zh (1978) 1995 Mar-Apr;67(2):34–40. [PubMed] [Google Scholar]
- Ladokhin A. S., Wang L., Steggles A. W., Malak H., Holloway P. W. Fluorescence study of a temperature-induced conversion from the "loose" to the "tight" binding form of membrane-bound cytochrome b5. Biochemistry. 1993 Jul 13;32(27):6951–6956. doi: 10.1021/bi00078a020. [DOI] [PubMed] [Google Scholar]
- Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
- Liu L. P., Deber C. M. Anionic phospholipids modulate peptide insertion into membranes. Biochemistry. 1997 May 6;36(18):5476–5482. doi: 10.1021/bi970030n. [DOI] [PubMed] [Google Scholar]
- Matko J., Ohki K., Edidin M. Luminescence quenching by nitroxide spin labels in aqueous solution: studies on the mechanism of quenching. Biochemistry. 1992 Jan 28;31(3):703–711. doi: 10.1021/bi00118a010. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Murase O., Tokuda H., Funakoshi S., Fujii N., Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994 Mar 22;33(11):3342–3349. doi: 10.1021/bi00177a027. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Holloway P. W. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes. Biochemistry. 1987 Mar 24;26(6):1783–1788. doi: 10.1021/bi00380a042. [DOI] [PubMed] [Google Scholar]
- Meers P. Location of tryptophans in membrane-bound annexins. Biochemistry. 1990 Apr 3;29(13):3325–3330. doi: 10.1021/bi00465a025. [DOI] [PubMed] [Google Scholar]
- Mishra V. K., Palgunachari M. N. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Biochemistry. 1996 Aug 27;35(34):11210–11220. doi: 10.1021/bi960760f. [DOI] [PubMed] [Google Scholar]
- Oren Z., Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry. 1997 Feb 18;36(7):1826–1835. doi: 10.1021/bi962507l. [DOI] [PubMed] [Google Scholar]
- Pastor R. W., Venable R. M., Karplus M. Model for the structure of the lipid bilayer. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):892–896. doi: 10.1073/pnas.88.3.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piknová B., Marsh D., Thompson T. E. Fluorescence-quenching study of percolation and compartmentalization in two-phase lipid bilayers. Biophys J. 1996 Aug;71(2):892–897. doi: 10.1016/S0006-3495(96)79291-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodionova N. A., Tatulian S. A., Surrey T., Jähnig F., Tamm L. K. Characterization of two membrane-bound forms of OmpA. Biochemistry. 1995 Feb 14;34(6):1921–1929. doi: 10.1021/bi00006a013. [DOI] [PubMed] [Google Scholar]
- Sassaroli M., Ruonala M., Virtanen J., Vauhkonen M., Somerharju P. Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study. Biochemistry. 1995 Jul 11;34(27):8843–8851. doi: 10.1021/bi00027a036. [DOI] [PubMed] [Google Scholar]
- Silvius J. R. Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures. Evaluation using fluorescent lipid probes and brominated lipid quenchers. Biochemistry. 1992 Apr 7;31(13):3398–3408. doi: 10.1021/bi00128a014. [DOI] [PubMed] [Google Scholar]
- Soares Macêdo Z., Furquim T. A., Ito A. S. Estimation of average depth of penetration of melanotropins in dimyristoylphosphatidylglycerol vesicles. Biophys Chem. 1996 Mar 7;59(1-2):193–202. doi: 10.1016/0301-4622(95)00136-0. [DOI] [PubMed] [Google Scholar]
- Voges K. P., Jung G., Sawyer W. H. Depth-dependent fluorescent quenching of a tryptophan residue located at defined positions on a rigid 21-peptide helix in liposomes. Biochim Biophys Acta. 1987 Jan 9;896(1):64–76. doi: 10.1016/0005-2736(87)90357-9. [DOI] [PubMed] [Google Scholar]
- Wiener M. C., White S. H. Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analogue of dioleoylphosphatidylcholine. Biochemistry. 1991 Jul 16;30(28):6997–7008. doi: 10.1021/bi00242a027. [DOI] [PubMed] [Google Scholar]
- Yeager M. D., Feigenson G. W. Fluorescence quenching in model membranes: phospholipid acyl chain distributions around small fluorophores. Biochemistry. 1990 May 8;29(18):4380–4392. doi: 10.1021/bi00470a018. [DOI] [PubMed] [Google Scholar]