Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1153–1165. doi: 10.1016/S0006-3495(99)77280-2

Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair.

C Cibert 1, G Prulière 1, C Lacombe 1, C Deprette 1, R Cassoly 1
PMCID: PMC1300097  PMID: 10049301

Abstract

Human red blood cells contain all of the elements involved in the formation of nonmuscle actomyosin II complexes (V. M. Fowler. 1986. J. Cell. Biochem. 31:1-9; 1996. Curr. Opin. Cell Biol. 8:86-96). No clear function has yet been attributed to these complexes. Using a mathematical model for the structure of the red blood cell spectrin skeleton (M. J. Saxton. 1992. J. Theor. Biol. 155:517-536), we have explored a possible role for myosin II bipolar minifilaments in the restoration of the membrane skeleton, which may be locally damaged by major mechanical or chemical stress. We propose that the establishment of stable links between distant antiparallel actin protofilaments after a local myosin II activation may initiate the repair of the disrupted area. We show that it is possible to define conditions in which the calculated number of myosin II minifilaments bound to actin protofilaments is consistent with the estimated number of myosin II minifilaments present in the red blood cells. A clear restoration effect can be observed when more than 50% of the spectrin polymers of a defined area are disrupted. It corresponds to a significant increase in the spectrin density in the protein free region of the membrane. This may be involved in a more complex repair process of the red blood cell membrane, which includes the vesiculation of the bilayer and the compaction of the disassembled spectrin network.

Full Text

The Full Text of this article is available as a PDF (908.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo H. P., Rega A. F., Garrahan P. J. The E2 in equilibrium E1 transition of the Ca2(+)-ATPase from plasma membranes studied by phosphorylation. J Biol Chem. 1990 Mar 5;265(7):3789–3792. [PubMed] [Google Scholar]
  2. Agre P., Casella J. F., Zinkham W. H., McMillan C., Bennett V. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. 1985 Mar 28-Apr 3Nature. 314(6009):380–383. doi: 10.1038/314380a0. [DOI] [PubMed] [Google Scholar]
  3. Allan D., Michell R. H. A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim Biophys Acta. 1978 Apr 4;508(2):277–286. doi: 10.1016/0005-2736(78)90330-9. [DOI] [PubMed] [Google Scholar]
  4. Backer J. M., Dawidowicz E. A. Reconstitution of a phospholipid flippase from rat liver microsomes. 1987 May 28-Jun 3Nature. 327(6120):341–343. doi: 10.1038/327341a0. [DOI] [PubMed] [Google Scholar]
  5. Bement W. M., Forscher P., Mooseker M. S. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol. 1993 May;121(3):565–578. doi: 10.1083/jcb.121.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett V., Branton D. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J Biol Chem. 1977 Apr 25;252(8):2753–2763. [PubMed] [Google Scholar]
  7. Bennett V., Stenbuck P. J. Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem. 1980 Jul 10;255(13):6424–6432. [PubMed] [Google Scholar]
  8. Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem. 1985;54:273–304. doi: 10.1146/annurev.bi.54.070185.001421. [DOI] [PubMed] [Google Scholar]
  9. Bloch R. J., Pumplin D. W. A model of spectrin as a concertina in the erythrocyte membrane skeleton. Trends Cell Biol. 1992 Jul;2(7):186–189. doi: 10.1016/0962-8924(92)90231-b. [DOI] [PubMed] [Google Scholar]
  10. Boal D. H. Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys J. 1994 Aug;67(2):521–529. doi: 10.1016/S0006-3495(94)80511-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  12. Chrzanowska-Wodnicka M., Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996 Jun;133(6):1403–1415. doi: 10.1083/jcb.133.6.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colin F. C., Schrier S. L. Myosin content and distribution in human neonatal erythrocytes are different from adult erythrocytes. Blood. 1991 Dec 1;78(11):3052–3055. [PubMed] [Google Scholar]
  14. Daniels R. S., McKay M. J., Atkinson E. M., Hipkiss A. R. Subcellular distribution of abnormal proteins in rabbit reticulocytes. Effects of cellular maturation, phenylhydrazine and inhibitors of ATP synthesis. FEBS Lett. 1983 May 30;156(1):145–150. doi: 10.1016/0014-5793(83)80266-x. [DOI] [PubMed] [Google Scholar]
  15. Discher D. E., Winardi R., Schischmanoff P. O., Parra M., Conboy J. G., Mohandas N. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol. 1995 Aug;130(4):897–907. doi: 10.1083/jcb.130.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Elgsaeter A., Stokke B. T., Mikkelsen A., Branton D. The molecular basis of erythrocyte shape. Science. 1986 Dec 5;234(4781):1217–1223. doi: 10.1126/science.3775380. [DOI] [PubMed] [Google Scholar]
  17. Foder B., Scharff O. Decrease of apparent calmodulin affinity of erythrocyte (Ca2+ + Mg2+)-ATPase at low Ca2+ concentrations. Biochim Biophys Acta. 1981 Dec 7;649(2):367–376. doi: 10.1016/0005-2736(81)90426-0. [DOI] [PubMed] [Google Scholar]
  18. Fowler V. M. An actomyosin contractile mechanism for erythrocyte shape transformations. J Cell Biochem. 1986;31(1):1–9. doi: 10.1002/jcb.240310102. [DOI] [PubMed] [Google Scholar]
  19. Fowler V. M., Bennett V. Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem. 1984 May 10;259(9):5978–5989. [PubMed] [Google Scholar]
  20. Fowler V. M., Davis J. Q., Bennett V. Human erythrocyte myosin: identification and purification. J Cell Biol. 1985 Jan;100(1):47–55. doi: 10.1083/jcb.100.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fowler V. M. Regulation of actin filament length in erythrocytes and striated muscle. Curr Opin Cell Biol. 1996 Feb;8(1):86–96. doi: 10.1016/s0955-0674(96)80052-4. [DOI] [PubMed] [Google Scholar]
  22. Fukushima Y., Kon H. On the mechanism of loss of deformability in human erythrocytes due to Heinz body formation: a flow EPR study. Toxicol Appl Pharmacol. 1990 Feb;102(2):205–218. doi: 10.1016/0041-008x(90)90021-l. [DOI] [PubMed] [Google Scholar]
  23. Gardner K., Bennett V. A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification. J Biol Chem. 1986 Jan 25;261(3):1339–1348. [PubMed] [Google Scholar]
  24. Graf E., Penniston J. T. Equimolar interaction between calmodulin and the Ca2+ ATPase from human erythrocyte membranes. Arch Biochem Biophys. 1981 Aug;210(1):257–262. doi: 10.1016/0003-9861(81)90187-9. [DOI] [PubMed] [Google Scholar]
  25. Gratzer W. B. The red cell membrane and its cytoskeleton. Biochem J. 1981 Jul 15;198(1):1–8. doi: 10.1042/bj1980001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hansen J. C., Skalak R., Chien S., Hoger A. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J. 1997 May;72(5):2369–2381. doi: 10.1016/S0006-3495(97)78882-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Henseleit U., Plasa G., Haest C. Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta. 1990 Nov 2;1029(1):127–135. doi: 10.1016/0005-2736(90)90445-t. [DOI] [PubMed] [Google Scholar]
  28. Higashihara M., Hartshorne D. J., Craig R., Ikebe M. Correlation of enzymatic properties and conformation of bovine erythrocyte myosin. Biochemistry. 1989 Feb 21;28(4):1642–1649. doi: 10.1021/bi00430a032. [DOI] [PubMed] [Google Scholar]
  29. Ikebe M., Reardon S. Phosphorylation of smooth myosin light chain kinase by smooth muscle Ca2+/calmodulin-dependent multifunctional protein kinase. J Biol Chem. 1990 Jun 5;265(16):8975–8978. [PubMed] [Google Scholar]
  30. Jarolim P., Lahav M., Liu S. C., Palek J. Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin. Blood. 1990 Nov 15;76(10):2125–2131. [PubMed] [Google Scholar]
  31. Johnson R. M., Tang K. Induction of a Ca(2+)-activated K+ channel in human erythrocytes by mechanical stress. Biochim Biophys Acta. 1992 Jun 30;1107(2):314–318. doi: 10.1016/0005-2736(92)90418-l. [DOI] [PubMed] [Google Scholar]
  32. Knipper M., Zimmermann U., Köpschall I., Rohbock K., Jüngling S., Zenner H. P. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells. Hear Res. 1995 Jun;86(1-2):100–110. doi: 10.1016/0378-5955(95)00060-h. [DOI] [PubMed] [Google Scholar]
  33. Kodícek M., Suttnar J., Mircevová L., Marík T. Red blood cells under mechanical stress. Gen Physiol Biophys. 1990 Jun;9(3):291–299. [PubMed] [Google Scholar]
  34. Kozlov M. M., Chernomordik L. V., Markin V. S. A mechanism of formation of protein-free regions in the red cell membrane: the rupture of the membrane skeleton. J Theor Biol. 1990 Jun 7;144(3):347–365. doi: 10.1016/s0022-5193(05)80080-3. [DOI] [PubMed] [Google Scholar]
  35. Larsen F. L., Katz S., Roufogalis B. D., Brooks D. E. Physiological shear stresses enhance the Ca2+ permeability of human erythrocytes. Nature. 1981 Dec 17;294(5842):667–668. doi: 10.1038/294667a0. [DOI] [PubMed] [Google Scholar]
  36. Leverett L. B., Hellums J. D., Alfrey C. P., Lynch E. C. Red blood cell damage by shear stress. Biophys J. 1972 Mar;12(3):257–273. doi: 10.1016/S0006-3495(72)86085-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lew V. L., Hockaday A., Freeman C. J., Bookchin R. M. Mechanism of spontaneous inside-out vesiculation of red cell membranes. J Cell Biol. 1988 Jun;106(6):1893–1901. doi: 10.1083/jcb.106.6.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liu S. C., Derick L. H., Palek J. Dependence of the permanent deformation of red blood cell membranes on spectrin dimer-tetramer equilibrium: implication for permanent membrane deformation of irreversibly sickled cells. Blood. 1993 Jan 15;81(2):522–528. [PubMed] [Google Scholar]
  39. Liu S. C., Yi S. J., Mehta J. R., Nichols P. E., Ballas S. K., Yacono P. W., Golan D. E., Palek J. Red cell membrane remodeling in sickle cell anemia. Sequestration of membrane lipids and proteins in Heinz bodies. J Clin Invest. 1996 Jan 1;97(1):29–36. doi: 10.1172/JCI118402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lombardo C. R., Low P. S. Calmodulin modulates protein 4.1 binding to human erythrocyte membranes. Biochim Biophys Acta. 1994 Dec 30;1196(2):139–144. doi: 10.1016/0005-2736(94)00233-9. [DOI] [PubMed] [Google Scholar]
  41. Lundberg S., Lehto V. P., Backman L. Characterization of calcium binding to spectrins. Biochemistry. 1992 Jun 23;31(24):5665–5671. doi: 10.1021/bi00139a034. [DOI] [PubMed] [Google Scholar]
  42. Marchesi V. T. Stabilizing infrastructure of cell membranes. Annu Rev Cell Biol. 1985;1:531–561. doi: 10.1146/annurev.cb.01.110185.002531. [DOI] [PubMed] [Google Scholar]
  43. Marston S. B., Redwood C. S. The essential role of tropomyosin in cooperative regulation of smooth muscle thin filament activity by caldesmon. J Biol Chem. 1993 Jun 15;268(17):12317–12320. [PubMed] [Google Scholar]
  44. Matovcik L. M., Gröschel-Stewart U., Schrier S. L. Myosin in adult and neonatal human erythrocyte membranes. Blood. 1986 Jun;67(6):1668–1674. [PubMed] [Google Scholar]
  45. Milos M., Schaer J. J., Comte M., Cox J. A. Calcium-proton and calcium-magnesium antagonisms in calmodulin: microcalorimetric and potentiometric analyses. Biochemistry. 1986 Oct 7;25(20):6279–6287. doi: 10.1021/bi00368a067. [DOI] [PubMed] [Google Scholar]
  46. Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
  47. Ogawa Y., Tanokura M. Calcium binding to calmodulin: effects of ionic strength, Mg2+, pH and temperature. J Biochem. 1984 Jan;95(1):19–28. doi: 10.1093/oxfordjournals.jbchem.a134584. [DOI] [PubMed] [Google Scholar]
  48. Pekrun A., Pinder J. C., Morris S. A., Gratzer W. B. Composition of the ternary protein complex of the red cell membrane cytoskeleton. Eur J Biochem. 1989 Jul 1;182(3):713–717. doi: 10.1111/j.1432-1033.1989.tb14883.x. [DOI] [PubMed] [Google Scholar]
  49. Ponnappa B. C., Greenquist A. C., Shohet S. B. Calcium-induced changes in polyphosphoinositides and phosphatidate in normal erythrocytes, sickle cells and hereditary pyropoikilocytes. Biochim Biophys Acta. 1980 Jun 6;598(3):494–501. doi: 10.1016/0005-2736(80)90030-9. [DOI] [PubMed] [Google Scholar]
  50. Racusen R. H., Pasternack G. R. Microscale, filtration-type binding assay for studying myosin-erythrocyte protein 4.1 interactions. Anal Biochem. 1990 Aug 1;188(2):344–348. doi: 10.1016/0003-2697(90)90618-j. [DOI] [PubMed] [Google Scholar]
  51. Rumsby M. G., Trotter J., Allan D., Michell R. H. Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte shape transformation. Biochem Soc Trans. 1977;5(1):126–128. doi: 10.1042/bst0050126. [DOI] [PubMed] [Google Scholar]
  52. Sackett D. L., Kosk-Kosicka D. The active species of plasma membrane Ca2+-ATPase are a dimer and a monomer-calmodulin complex. J Biol Chem. 1996 Apr 26;271(17):9987–9991. doi: 10.1074/jbc.271.17.9987. [DOI] [PubMed] [Google Scholar]
  53. Saxton M. J. Gaps in the erythrocyte membrane skeleton: a stretched net model. J Theor Biol. 1992 Apr 21;155(4):517–536. doi: 10.1016/s0022-5193(05)80633-2. [DOI] [PubMed] [Google Scholar]
  54. Saxton M. J. Single-particle tracking: effects of corrals. Biophys J. 1995 Aug;69(2):389–398. doi: 10.1016/S0006-3495(95)79911-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schlüter K., Drenckhahn D. Co-clustering of denatured hemoglobin with band 3: its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6137–6141. doi: 10.1073/pnas.83.16.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schrier S. L., Hardy B., Junga I., Ma L. Actin-activated ATPase in human red cell membranes. Blood. 1981 Nov;58(5):953–962. [PubMed] [Google Scholar]
  57. Seidler N. W., Swislocki N. I. Ca2+ transport activities of inside-out vesicles prepared from density-separated erythrocytes from rat and human. Mol Cell Biochem. 1991 Jul 10;105(2):159–169. doi: 10.1007/BF00227755. [DOI] [PubMed] [Google Scholar]
  58. Shen B. W., Josephs R., Steck T. L. Ultrastructure of the intact skeleton of the human erythrocyte membrane. J Cell Biol. 1986 Mar;102(3):997–1006. doi: 10.1083/jcb.102.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Shinozuka T. Changes in human red blood cells during aging in vivo. Keio J Med. 1994 Sep;43(3):155–163. doi: 10.2302/kjm.43.155. [DOI] [PubMed] [Google Scholar]
  60. Shohet S. B. Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes. J Clin Invest. 1979 Aug;64(2):483–494. doi: 10.1172/JCI109486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Sinard J. H., Stafford W. F., Pollard T. D. The mechanism of assembly of Acanthamoeba myosin-II minifilaments: minifilaments assemble by three successive dimerization steps. J Cell Biol. 1989 Oct;109(4 Pt 1):1537–1547. doi: 10.1083/jcb.109.4.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Solar I., Dulitzky J., Shaklai N. Hemin-promoted peroxidation of red cell cytoskeletal proteins. Arch Biochem Biophys. 1990 Nov 15;283(1):81–89. doi: 10.1016/0003-9861(90)90615-6. [DOI] [PubMed] [Google Scholar]
  63. Speicher D. W., Weglarz L., DeSilva T. M. Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J Biol Chem. 1992 Jul 25;267(21):14775–14782. [PubMed] [Google Scholar]
  64. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  65. Tan J. L., Ravid S., Spudich J. A. Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem. 1992;61:721–759. doi: 10.1146/annurev.bi.61.070192.003445. [DOI] [PubMed] [Google Scholar]
  66. Tanaka T., Kadowaki K., Lazarides E., Sobue K. Ca2(+)-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. J Biol Chem. 1991 Jan 15;266(2):1134–1140. [PubMed] [Google Scholar]
  67. Tchernia G., Mohandas N., Shohet S. B. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J Clin Invest. 1981 Aug;68(2):454–460. doi: 10.1172/JCI110275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Trybus K. M. Regulation of smooth muscle myosin. Cell Motil Cytoskeleton. 1991;18(2):81–85. doi: 10.1002/cm.970180202. [DOI] [PubMed] [Google Scholar]
  69. VanBuren P., Guilford W. H., Kennedy G., Wu J., Warshaw D. M. Smooth muscle myosin: a high force-generating molecular motor. Biophys J. 1995 Apr;68(4 Suppl):256S–259S. [PMC free article] [PubMed] [Google Scholar]
  70. Waugh R. E. Effects of abnormal cytoskeletal structure on erythrocyte membrane mechanical properties. Cell Motil. 1983;3(5-6):609–622. doi: 10.1002/cm.970030526. [DOI] [PubMed] [Google Scholar]
  71. Waugh S. M., Low P. S. Hemichrome binding to band 3: nucleation of Heinz bodies on the erythrocyte membrane. Biochemistry. 1985 Jan 1;24(1):34–39. doi: 10.1021/bi00322a006. [DOI] [PubMed] [Google Scholar]
  72. Waugh S. M., Willardson B. M., Kannan R., Labotka R. J., Low P. S. Heinz bodies induce clustering of band 3, glycophorin, and ankyrin in sickle cell erythrocytes. J Clin Invest. 1986 Nov;78(5):1155–1160. doi: 10.1172/JCI112696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wong A. J., Kiehart D. P., Pollard T. D. Myosin from human erythrocytes. J Biol Chem. 1985 Jan 10;260(1):46–49. [PubMed] [Google Scholar]
  74. Yoshino H., Minari O. Characterization of the lateral interaction between human erythrocyte spectrin subunits. J Biochem. 1991 Oct;110(4):553–558. doi: 10.1093/oxfordjournals.jbchem.a123618. [DOI] [PubMed] [Google Scholar]
  75. der Terrossian E., Deprette C., Lebbar I., Cassoly R. Purification and characterization of erythrocyte caldesmon. Hypothesis for an actin-linked regulation of a contractile activity in the red blood cell membrane. Eur J Biochem. 1994 Jan 15;219(1-2):503–511. doi: 10.1111/j.1432-1033.1994.tb19965.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES