Abstract
Hydrogen-deuterium exchange has been monitored by solid-state NMR to investigate the structure of gramicidin M in a lipid bilayer and to investigate the mechanisms for polypeptide insertion into a lipid bilayer. Through exchange it is possible to observe 15N-2H dipolar interactions in oriented samples that yield precise structural constraints. In separate experiments the pulse sequence SFAM was used to measure dipolar distances in this structure, showing that the dimer is antiparallel. The combined use of orientational and distance constraints is shown to be a powerful structural approach. By monitoring the hydrogen-deuterium exchange at different stages in the insertion of peptides into a bilayer environment it is shown that dimeric gramicidin is inserted into the bilayer intact, i.e., without separating into monomer units. The exchange mechanism is investigated for various sites and support for a relayed imidic acid mechanism is presented. Both acid and base catalyzed mechanisms may be operable. The nonexchangeable sites clearly define a central core to which water is inaccessible or hydroxide or hydronium ion is not even momentarily stable. This provides strong evidence that this is a nonconducting state.
Full Text
The Full Text of this article is available as a PDF (417.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdul-Manan N., Hinton J. F. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy. Biochemistry. 1994 Jun 7;33(22):6773–6783. doi: 10.1021/bi00188a005. [DOI] [PubMed] [Google Scholar]
- Arumugam S., Pascal S., North C. L., Hu W., Lee K. C., Cotten M., Ketchem R. R., Xu F., Brenneman M., Kovacs F. Conformational trapping in a membrane environment: a regulatory mechanism for protein activity? Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5872–5876. doi: 10.1073/pnas.93.12.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotten M., Xu F., Cross T. A. Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system. Biophys J. 1997 Aug;73(2):614–623. doi: 10.1016/S0006-3495(97)78097-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
- Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
- Eriksson M. A., Härd T., Nilsson L. On the pH dependence of amide proton exchange rates in proteins. Biophys J. 1995 Aug;69(2):329–339. doi: 10.1016/S0006-3495(95)79905-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fields C. G., Fields G. B., Noble R. L., Cross T. A. Solid phase peptide synthesis of 15N-gramicidins A, B, and C and high performance liquid chromatographic purification. Int J Pept Protein Res. 1989 Apr;33(4):298–303. doi: 10.1111/j.1399-3011.1989.tb01285.x. [DOI] [PubMed] [Google Scholar]
- Fields G. B., Fields C. G., Petefish J., Van Wart H. E., Cross T. A. Solid-phase peptide synthesis and solid-state NMR spectroscopy of [Ala3-15N][Val1]gramicidin A. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1384–1388. doi: 10.1073/pnas.85.5.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonseca V., Daumas P., Ranjalahy-Rasoloarijao L., Heitz F., Lazaro R., Trudelle Y., Andersen O. S. Gramicidin channels that have no tryptophan residues. Biochemistry. 1992 Jun 16;31(23):5340–5350. doi: 10.1021/bi00138a014. [DOI] [PubMed] [Google Scholar]
- Heitz F., Gavach C., Spach G., Trudelle Y. Analysis of the ion transfer through the channel of 9,11,13,15-phenylalanylgramicidin A. Biophys Chem. 1986 Jul;24(2):143–148. doi: 10.1016/0301-4622(86)80007-2. [DOI] [PubMed] [Google Scholar]
- Henry G. D., Sykes B. D. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry. 1990 Jul 3;29(26):6303–6313. doi: 10.1021/bi00478a027. [DOI] [PubMed] [Google Scholar]
- Huo S., Arumugam S., Cross T. A. Hydrogen exchange in the lipid bilayer-bound gramicidin channel. Solid State Nucl Magn Reson. 1996 Dec;7(3):177–183. doi: 10.1016/s0926-2040(96)01260-x. [DOI] [PubMed] [Google Scholar]
- Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
- Ketchem R. R., Lee K. C., Huo S., Cross T. A. Macromolecular structural elucidation with solid-state NMR-derived orientational constraints. J Biomol NMR. 1996 Jul;8(1):1–14. doi: 10.1007/BF00198135. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Influence of charge on the rate of amide proton exchange. Biochemistry. 1982 Jan 5;21(1):1–5. doi: 10.1021/bi00530a001. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Anderson O. S. Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct. 1996;25:231–258. doi: 10.1146/annurev.bb.25.060196.001311. [DOI] [PubMed] [Google Scholar]
- Langs D. A., Smith G. D., Courseille C., Précigoux G., Hospital M. Monoclinic uncomplexed double-stranded, antiparallel, left-handed beta 5.6-helix (increases decreases beta 5.6) structure of gramicidin A: alternate patterns of helical association and deformation. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5345–5349. doi: 10.1073/pnas.88.12.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langs D. A. Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science. 1988 Jul 8;241(4862):188–191. doi: 10.1126/science.2455345. [DOI] [PubMed] [Google Scholar]
- Lee K. C., Hu W., Cross T. A. 2H NMR determination of the global correlation time of the gramicidin channel in a lipid bilayer. Biophys J. 1993 Sep;65(3):1162–1167. doi: 10.1016/S0006-3495(93)81150-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson L. K., Cross T. A. Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of beta-type hydrogen bonding. Biochemistry. 1989 Nov 28;28(24):9379–9385. doi: 10.1021/bi00450a019. [DOI] [PubMed] [Google Scholar]
- North C. L., Cross T. A. Correlations between function and dynamics: time scale coincidence for ion translocation and molecular dynamics in the gramicidin channel backbone. Biochemistry. 1995 May 2;34(17):5883–5895. doi: 10.1021/bi00017a018. [DOI] [PubMed] [Google Scholar]
- O'Connell A. M., Koeppe R. E., 2nd, Andersen O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 1990 Nov 30;250(4985):1256–1259. doi: 10.1126/science.1700867. [DOI] [PubMed] [Google Scholar]
- O'Neil J. D., Sykes B. D. NMR studies of the influence of dodecyl sulfate on the amide hydrogen exchange kinetics of a micelle-solubilized hydrophobic tripeptide. Biochemistry. 1989 Jan 24;28(2):699–707. doi: 10.1021/bi00428a043. [DOI] [PubMed] [Google Scholar]
- Pascal S. M., Cross T. A. High-resolution structure and dynamic implications for a double-helical gramicidin A conformer. J Biomol NMR. 1993 Sep;3(5):495–513. doi: 10.1007/BF00174606. [DOI] [PubMed] [Google Scholar]
- Pascal S. M., Cross T. A. Polypeptide conformational space. Dynamics by solution NMR disorder by X-ray crystallography. J Mol Biol. 1994 Aug 19;241(3):431–439. doi: 10.1006/jmbi.1994.1518. [DOI] [PubMed] [Google Scholar]
- Pascal S. M., Cross T. A. Structure of an isolated gramicidin A double helical species by high-resolution nuclear magnetic resonance. J Mol Biol. 1992 Aug 20;226(4):1101–1109. doi: 10.1016/0022-2836(92)91055-t. [DOI] [PubMed] [Google Scholar]
- Perrin C. L. Symmetries of hydrogen bonds in solution. Science. 1994 Dec 9;266(5191):1665–1668. doi: 10.1126/science.266.5191.1665. [DOI] [PubMed] [Google Scholar]
- Rohl C. A., Baldwin R. L. Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR. Biochemistry. 1994 Jun 28;33(25):7760–7767. doi: 10.1021/bi00191a003. [DOI] [PubMed] [Google Scholar]
- Salom D., Bañ M. C., Braco L., Abad C. HPLC demonstration that an all Trp-->Phe replacement in gramicidin A results in a conformational rearrangement from beta-helical monomer to double-stranded dimer in model membranes. Biochem Biophys Res Commun. 1995 Apr 17;209(2):466–473. doi: 10.1006/bbrc.1995.1525. [DOI] [PubMed] [Google Scholar]
- Tian F., Lee K. C., Hu W., Cross T. A. Monovalent cation transport: lack of structural deformation upon cation binding. Biochemistry. 1996 Sep 17;35(37):11959–11966. doi: 10.1021/bi961170k. [DOI] [PubMed] [Google Scholar]
- Tüchsen E., Woodward C. Mechanism of surface peptide proton exchange in bovine pancreatic trypsin inhibitor. Salt effects and O-protonation. J Mol Biol. 1985 Sep 20;185(2):421–430. doi: 10.1016/0022-2836(85)90413-9. [DOI] [PubMed] [Google Scholar]
- Wagner G. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Q Rev Biophys. 1983 Feb;16(1):1–57. doi: 10.1017/s0033583500004911. [DOI] [PubMed] [Google Scholar]
- Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
- Wallace B. A., Ravikumar K. The gramicidin pore: crystal structure of a cesium complex. Science. 1988 Jul 8;241(4862):182–187. doi: 10.1126/science.2455344. [DOI] [PubMed] [Google Scholar]
- Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Pascal S. M., Cross T. A. A conformational rearrangement in gramicidin A: from a double-stranded left-handed to a single-stranded right-handed helix. Biochemistry. 1992 Sep 22;31(37):8822–8828. doi: 10.1021/bi00152a019. [DOI] [PubMed] [Google Scholar]