Abstract
We describe the results of a series of theoretical calculations of electron transfer pathways between Trp306 and *FADH. in the Escherichia coli DNA photolyase molecule, using the method of interatomic tunneling currents. It is found that there are two conformationally orthogonal tryptophans, Trp359 and Trp382, between donor and acceptor that play a crucial role in the pathways of the electron transfer process. The pathways depend vitally on the aromaticity of tryptophans and the flavin molecule. The results of this calculation suggest that the major pathway of the electron transfer is due to a set of overlapping orthogonal pi-rings, which starts from the donor Trp306, runs through Trp359 and Trp382, and finally reaches the flavin group of the acceptor complex, FADH.
Full Text
The Full Text of this article is available as a PDF (327.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beratan D. N., Onuchic J. N., Winkler J. R., Gray H. B. Electron-tunneling pathways in proteins. Science. 1992 Dec 11;258(5089):1740–1741. doi: 10.1126/science.1334572. [DOI] [PubMed] [Google Scholar]
- Bower M. J., Cohen F. E., Dunbrack R. L., Jr Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol. 1997 Apr 18;267(5):1268–1282. doi: 10.1006/jmbi.1997.0926. [DOI] [PubMed] [Google Scholar]
- Daizadeh I., Medvedev E. S., Stuchebrukhov A. A. Effect of protein dynamics on biological electron transfer. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3703–3708. doi: 10.1073/pnas.94.8.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain I., Griffith J., Sancar A. Thymine dimers bend DNA. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2558–2562. doi: 10.1073/pnas.85.8.2558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. L., Hamm-Alvarez S., Payne G., Sancar G. B., Rajagopalan K. V., Sancar A. Identification of the second chromophore of Escherichia coli and yeast DNA photolyases as 5,10-methenyltetrahydrofolate. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2046–2050. doi: 10.1073/pnas.85.7.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanai S., Kikuno R., Toh H., Ryo H., Todo T. Molecular evolution of the photolyase-blue-light photoreceptor family. J Mol Evol. 1997 Nov;45(5):535–548. doi: 10.1007/pl00006258. [DOI] [PubMed] [Google Scholar]
- Kim S. T., Li Y. F., Sancar A. The third chromophore of DNA photolyase: Trp-277 of Escherichia coli DNA photolyase repairs thymine dimers by direct electron transfer. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):900–904. doi: 10.1073/pnas.89.3.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S. T., Sancar A. Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. Biochemistry. 1991 Sep 3;30(35):8623–8630. doi: 10.1021/bi00099a019. [DOI] [PubMed] [Google Scholar]
- Kim S. T., Sancar A., Essenmacher C., Babcock G. T. Time-resolved EPR studies with DNA photolyase: excited-state FADH0 abstracts an electron from Trp-306 to generate FADH-, the catalytically active form of the cofactor. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8023–8027. doi: 10.1073/pnas.90.17.8023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S. T., Sancar A. Photochemistry, photophysics, and mechanism of pyrimidine dimer repair by DNA photolyase. Photochem Photobiol. 1993 May;57(5):895–904. doi: 10.1111/j.1751-1097.1993.tb09232.x. [DOI] [PubMed] [Google Scholar]
- Langen R., Chang I. J., Germanas J. P., Richards J. H., Winkler J. R., Gray H. B. Electron tunneling in proteins: coupling through a beta strand. Science. 1995 Jun 23;268(5218):1733–1735. doi: 10.1126/science.7792598. [DOI] [PubMed] [Google Scholar]
- Li Y. F., Heelis P. F., Sancar A. Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry. 1991 Jun 25;30(25):6322–6329. doi: 10.1021/bi00239a034. [DOI] [PubMed] [Google Scholar]
- Ozer Z., Reardon J. T., Hsu D. S., Malhotra K., Sancar A. The other function of DNA photolyase: stimulation of excision repair of chemical damage to DNA. Biochemistry. 1995 Dec 12;34(49):15886–15889. doi: 10.1021/bi00049a002. [DOI] [PubMed] [Google Scholar]
- Park H. W., Kim S. T., Sancar A., Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science. 1995 Jun 30;268(5219):1866–1872. doi: 10.1126/science.7604260. [DOI] [PubMed] [Google Scholar]
- Payne G., Heelis P. F., Rohrs B. R., Sancar A. The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. Biochemistry. 1987 Nov 3;26(22):7121–7127. doi: 10.1021/bi00396a038. [DOI] [PubMed] [Google Scholar]
- Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
- Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
- Sancar G. B., Smith F. W., Sancar A. Binding of Escherichia coli DNA photolyase to UV-irradiated DNA. Biochemistry. 1985 Apr 9;24(8):1849–1855. doi: 10.1021/bi00329a007. [DOI] [PubMed] [Google Scholar]
- Todo T., Ryo H., Yamamoto K., Toh H., Inui T., Ayaki H., Nomura T., Ikenaga M. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science. 1996 Apr 5;272(5258):109–112. doi: 10.1126/science.272.5258.109. [DOI] [PubMed] [Google Scholar]