Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1270–1279. doi: 10.1016/S0006-3495(99)77290-5

Low temperature and pressure stability of picornaviruses: implications for virus uncoating.

A C Oliveira 1, D Ishimaru 1, R B Gonçalves 1, T J Smith 1, P Mason 1, D Sá-Carvalho 1, J L Silva 1
PMCID: PMC1300107  PMID: 10049311

Abstract

The family Picornaviridae includes several viruses of great economic and medical importance. Poliovirus replicates in the human digestive tract, causing disease that may range in severity from a mild infection to a fatal paralysis. The human rhinovirus is the most important etiologic agent of the common cold in adults and children. Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases in cattle. These viruses have in common a capsid structure composed of 60 copies of four different proteins, VP1 to VP4, and their 3D structures show similar general features. In this study we describe the differences in stability against high pressure and cold denaturation of these viruses. Both poliovirus and rhinovirus are stable to high pressure at room temperature, because pressures up to 2.4 kbar are not enough to promote viral disassembly and inactivation. Within the same pressure range, FMDV particles are dramatically affected by pressure, with a loss of infectivity of more than 4 log units observed. The dissociation of polio and rhino viruses can be observed only under pressure (2.4 kbar) at low temperatures in the presence of subdenaturing concentrations of urea (1-2 M). The pressure and low temperature data reveal clear differences in stability among the three picornaviruses, FMDV being the most sensitive, polio being the most resistant, and rhino having intermediate stability. Whereas rhino and poliovirus differ little in stability (less than 10 kcal/mol at 0 degrees C), the difference in free energy between these two viruses and FMDV was remarkable (more than 200 kcal/mol of particle). These differences are crucial to understanding the different factors that control the assembly and disassembly of the virus particles during their life cycle. The inactivation of these viruses by pressure (combined or not with low temperature) has potential as a method for producing vaccines.

Full Text

The Full Text of this article is available as a PDF (325.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 1989 Feb 23;337(6209):709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Baron M. H., Baltimore D. Antibodies against the chemically synthesized genome-linked protein of poliovirus react with native virus-specific proteins. Cell. 1982 Feb;28(2):395–404. doi: 10.1016/0092-8674(82)90357-9. [DOI] [PubMed] [Google Scholar]
  3. Baxt B., Bachrach H. L. Early interactions of foot-and-mouth disease virus with cultured cells. Virology. 1980 Jul 15;104(1):42–55. doi: 10.1016/0042-6822(80)90364-5. [DOI] [PubMed] [Google Scholar]
  4. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol. 1995 Apr;69(4):2664–2666. doi: 10.1128/jvi.69.4.2664-2666.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloom B. R. A perspective on AIDS vaccines. Science. 1996 Jun 28;272(5270):1888–1890. doi: 10.1126/science.272.5270.1888. [DOI] [PubMed] [Google Scholar]
  6. Budowsky E. I. Problems and prospects for preparation of killed antiviral vaccines. Adv Virus Res. 1991;39:255–290. doi: 10.1016/s0065-3527(08)60797-6. [DOI] [PubMed] [Google Scholar]
  7. Colonno R. J., Callahan P. L., Long W. J. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol. 1986 Jan;57(1):7–12. doi: 10.1128/jvi.57.1.7-12.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curry S., Chow M., Hogle J. M. The poliovirus 135S particle is infectious. J Virol. 1996 Oct;70(10):7125–7131. doi: 10.1128/jvi.70.10.7125-7131.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Da Poian A. T., Gomes A. M., Oliveira R. J., Silva J. L. Migration of vesicular stomatitis virus glycoprotein to the nucleus of infected cells. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8268–8273. doi: 10.1073/pnas.93.16.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Da Poian A. T., Oliveira A. C., Gaspar L. P., Silva J. L., Weber G. Reversible pressure dissociation of R17 bacteriophage. The physical individuality of virus particles. J Mol Biol. 1993 Jun 20;231(4):999–1008. doi: 10.1006/jmbi.1993.1347. [DOI] [PubMed] [Google Scholar]
  11. Dove A. W., Racaniello V. R. Cold-adapted poliovirus mutants bypass a postentry replication block. J Virol. 1997 Jun;71(6):4728–4735. doi: 10.1128/jvi.71.6.4728-4735.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Erickson J. W., Frankenberger E. A., Rossmann M. G., Fout G. S., Medappa K. C., Rueckert R. R. Crystallization of a common cold virus, human rhinovirus 14: "isomorphism" with poliovirus crystals. Proc Natl Acad Sci U S A. 1983 Feb;80(4):931–934. doi: 10.1073/pnas.80.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Everaert L., Vrijsen R., Boeyé A. Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology. 1989 Jul;171(1):76–82. doi: 10.1016/0042-6822(89)90512-6. [DOI] [PubMed] [Google Scholar]
  14. Foguel D., Chaloub R. M., Silva J. L., Crofts A. R., Weber G. Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria. Biophys J. 1992 Dec;63(6):1613–1622. doi: 10.1016/S0006-3495(92)81756-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Foguel D., Silva J. L. Cold denaturation of a repressor-operator complex: the role of entropy in protein-DNA recognition. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8244–8247. doi: 10.1073/pnas.91.17.8244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Foguel D., Teschke C. M., Prevelige P. E., Jr, Silva J. L. Role of entropic interactions in viral capsids: single amino acid substitutions in P22 bacteriophage coat protein resulting in loss of capsid stability. Biochemistry. 1995 Jan 31;34(4):1120–1126. doi: 10.1021/bi00004a003. [DOI] [PubMed] [Google Scholar]
  17. Foguel D., Weber G. Pressure-induced dissociation and denaturation of allophycocyanin at subzero temperatures. J Biol Chem. 1995 Dec 1;270(48):28759–28766. doi: 10.1074/jbc.270.48.28759. [DOI] [PubMed] [Google Scholar]
  18. Gaspar L. P., Johnson J. E., Silva J. L., Da Poian A. T. Partially folded states of the capsid protein of cowpea severe mosaic virus in the disassembly pathway. J Mol Biol. 1997 Oct 24;273(2):456–466. doi: 10.1006/jmbi.1997.1299. [DOI] [PubMed] [Google Scholar]
  19. Giranda V. L., Heinz B. A., Oliveira M. A., Minor I., Kim K. H., Kolatkar P. R., Rossmann M. G., Rueckert R. R. Acid-induced structural changes in human rhinovirus 14: possible role in uncoating. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10213–10217. doi: 10.1073/pnas.89.21.10213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hogle J. M., Chow M., Filman D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985 Sep 27;229(4720):1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
  21. Johnson J. E. Functional implications of protein-protein interactions in icosahedral viruses. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):27–33. doi: 10.1073/pnas.93.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
  23. Jurkiewicz E., Villas-Boas M., Silva J. L., Weber G., Hunsmann G., Clegg R. M. Inactivation of simian immunodeficiency virus by hydrostatic pressure. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6935–6937. doi: 10.1073/pnas.92.15.6935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  25. Knipe T., Rieder E., Baxt B., Ward G., Mason P. W. Characterization of synthetic foot-and-mouth disease virus provirions separates acid-mediated disassembly from infectivity. J Virol. 1997 Apr;71(4):2851–2856. doi: 10.1128/jvi.71.4.2851-2856.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  27. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J., Parry N. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature. 1993 Apr 8;362(6420):566–568. doi: 10.1038/362566a0. [DOI] [PubMed] [Google Scholar]
  28. Lonberg-Holm K., Korant B. D. Early interaction of rhinoviruses with host cells. J Virol. 1972 Jan;9(1):29–40. doi: 10.1128/jvi.9.1.29-40.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mason P. W., Rieder E., Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1932–1936. doi: 10.1073/pnas.91.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mendelsohn C. L., Wimmer E., Racaniello V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  31. Nakagami T., Shigehisa T., Ohmori T., Taji S., Hase A., Kimura T., Yamanishi K. Inactivation of herpes viruses by high hydrostatic pressure. J Virol Methods. 1992 Aug;38(2):255–261. doi: 10.1016/0166-0934(92)90115-t. [DOI] [PubMed] [Google Scholar]
  32. Paladini A. A., Jr, Weber G. Pressure-induced reversible dissociation of enolase. Biochemistry. 1981 Apr 28;20(9):2587–2593. doi: 10.1021/bi00512a034. [DOI] [PubMed] [Google Scholar]
  33. Prevelige P. E., Jr, King J., Silva J. L. Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J. 1994 May;66(5):1631–1641. doi: 10.1016/S0006-3495(94)80955-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reddy V. S., Giesing H. A., Morton R. T., Kumar A., Post C. B., Brooks C. L., 3rd, Johnson J. E. Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys J. 1998 Jan;74(1):546–558. doi: 10.1016/S0006-3495(98)77813-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robinson C. R., Sligar S. G. Hydrostatic and osmotic pressure as tools to study macromolecular recognition. Methods Enzymol. 1995;259:395–427. doi: 10.1016/0076-6879(95)59054-4. [DOI] [PubMed] [Google Scholar]
  36. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985 Sep 12;317(6033):145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  37. Rossmann M. G., Johnson J. E. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. doi: 10.1146/annurev.bi.58.070189.002533. [DOI] [PubMed] [Google Scholar]
  38. Rossmann M. G. Viral cell recognition and entry. Protein Sci. 1994 Oct;3(10):1712–1725. doi: 10.1002/pro.5560031010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sa-Carvalho D., Rieder E., Baxt B., Rodarte R., Tanuri A., Mason P. W. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol. 1997 Jul;71(7):5115–5123. doi: 10.1128/jvi.71.7.5115-5123.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Silva J. L., Foguel D., Da Poian A. T., Prevelige P. E. The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol. 1996 Apr;6(2):166–175. doi: 10.1016/s0959-440x(96)80071-6. [DOI] [PubMed] [Google Scholar]
  41. Silva J. L., Luan P., Glaser M., Voss E. W., Weber G. Effects of hydrostatic pressure on a membrane-enveloped virus: high immunogenicity of the pressure-inactivated virus. J Virol. 1992 Apr;66(4):2111–2117. doi: 10.1128/jvi.66.4.2111-2117.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Silva J. L., Silveira C. F., Correia Júnior A., Pontes L. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol. 1992 Jan 20;223(2):545–555. doi: 10.1016/0022-2836(92)90669-b. [DOI] [PubMed] [Google Scholar]
  43. Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
  44. Silva J. L., Weber G. Pressure-induced dissociation of brome mosaic virus. J Mol Biol. 1988 Jan 5;199(1):149–159. doi: 10.1016/0022-2836(88)90385-3. [DOI] [PubMed] [Google Scholar]
  45. Smith T. J., Chase E. S., Schmidt T. J., Olson N. H., Baker T. S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996 Sep 26;383(6598):350–354. doi: 10.1038/383350a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith T. J., Kremer M. J., Luo M., Vriend G., Arnold E., Kamer G., Rossmann M. G., McKinlay M. A., Diana G. D., Otto M. J. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science. 1986 Sep 19;233(4770):1286–1293. doi: 10.1126/science.3018924. [DOI] [PubMed] [Google Scholar]
  47. Weber G., Da Poian A. T., Silva J. L. Concentration dependence of the subunit association of oligomers and viruses and the modification of the latter by urea binding. Biophys J. 1996 Jan;70(1):167–173. doi: 10.1016/S0006-3495(96)79557-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang J., Peng X., Jonas A., Jonas J. NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631–8641. doi: 10.1021/bi00027a012. [DOI] [PubMed] [Google Scholar]
  49. da Poian A. T., Oliveira A. C., Silva J. L. Cold denaturation of an icosahedral virus. The role of entropy in virus assembly. Biochemistry. 1995 Feb 28;34(8):2672–2677. doi: 10.1021/bi00008a034. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES