Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1423–1435. doi: 10.1016/S0006-3495(99)77303-0

Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances.

T A Kinard 1, G de Vries 1, A Sherman 1, L S Satin 1
PMCID: PMC1300120  PMID: 10049324

Abstract

Glucose triggers bursting activity in pancreatic islets, which mediates the Ca2+ uptake that triggers insulin secretion. Aside from the channel mechanism responsible for bursting, which remains unsettled, it is not clear whether bursting is an endogenous property of individual beta-cells or requires an electrically coupled islet. While many workers report stochastic firing or quasibursting in single cells, a few reports describe single-cell bursts much longer (minutes) than those of islets (15-60 s). We studied the behavior of single cells systematically to help resolve this issue. Perforated patch recordings were made from single mouse beta-cells or hamster insulinoma tumor cells in current clamp at 30-35 degrees C, using standard K+-rich pipette solution and external solutions containing 11.1 mM glucose. Dynamic clamp was used to apply artificial KATP and Ca2+ channel conductances to cells in current clamp to assess the role of Ca2+ and KATP channels in single cell firing. The electrical activity we observed in mouse beta-cells was heterogeneous, with three basic patterns encountered: 1) repetitive fast spiking; 2) fast spikes superimposed on brief (<5 s) plateaus; or 3) periodic plateaus of longer duration (10-20 s) with small spikes. Pattern 2 was most similar to islet bursting but was significantly faster. Burst plateaus lasting on the order of minutes were only observed when recordings were made from cell clusters. Adding gCa to cells increased the depolarizing drive of bursting and lengthened the plateaus, whereas adding gKATP hyperpolarized the cells and lengthened the silent phases. Adding gCa and gKATP together did not cancel out their individual effects but could induce robust bursts that resembled those of islets, and with increased period. These added currents had no slow components, indicating that the mechanisms of physiological bursting are likely to be endogenous to single beta-cells. It is unlikely that the fast bursting (class 2) was due to oscillations in gKATP because it persisted in 100 microM tolbutamide. The ability of small exogenous currents to modify beta-cell firing patterns supports the hypothesis that single cells contain the necessary mechanisms for bursting but often fail to exhibit this behavior because of heterogeneity of cell parameters.

Full Text

The Full Text of this article is available as a PDF (200.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel K. B., Lehr S., Ullrich S. Adrenaline-, not somatostatin-induced hyperpolarization is accompanied by a sustained inhibition of insulin secretion in INS-1 cells. Activation of sulphonylurea K+ATP channels is not involved. Pflugers Arch. 1996 May;432(1):89–96. doi: 10.1007/s004240050109. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft F. M., Rorsman P. ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans. 1990 Feb;18(1):109–111. doi: 10.1042/bst0180109. [DOI] [PubMed] [Google Scholar]
  4. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  5. Atwater I., Dawson C. M., Eddlestone G. T., Rojas E. Voltage noise measurements across the pancreatic beta-cell membrane: calcium channel characteristics. J Physiol. 1981 May;314:195–212. doi: 10.1113/jphysiol.1981.sp013701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Atwater I., Ribalet B., Rojas E. Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol. 1978 May;278:117–139. doi: 10.1113/jphysiol.1978.sp012296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonner-Weir S., Deery D., Leahy J. L., Weir G. C. Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes. 1989 Jan;38(1):49–53. doi: 10.2337/diab.38.1.49. [DOI] [PubMed] [Google Scholar]
  8. Cook D. L. Electrical pacemaker mechanisms of pancreatic islet cells. Fed Proc. 1984 Jun;43(9):2368–2372. [PubMed] [Google Scholar]
  9. Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
  10. Cook D. L., Ikeuchi M. Tolbutamide as mimic of glucose on beta-cell electrical activity. ATP-sensitive K+ channels as common pathway for both stimuli. Diabetes. 1989 Apr;38(4):416–421. doi: 10.2337/diab.38.4.416. [DOI] [PubMed] [Google Scholar]
  11. Cook D. L., Satin L. S., Ashford M. L., Hales C. N. ATP-sensitive K+ channels in pancreatic beta-cells. Spare-channel hypothesis. Diabetes. 1988 May;37(5):495–498. doi: 10.2337/diab.37.5.495. [DOI] [PubMed] [Google Scholar]
  12. Cook D. L., Satin L. S., Hopkins W. F. Pancreatic B cells are bursting, but how? Trends Neurosci. 1991 Sep;14(9):411–414. doi: 10.1016/0166-2236(91)90033-q. [DOI] [PubMed] [Google Scholar]
  13. Dean P. M., Matthews E. K. Electrical activity in pancreatic islet cells. Nature. 1968 Jul 27;219(5152):389–390. doi: 10.1038/219389a0. [DOI] [PubMed] [Google Scholar]
  14. Dean P. M., Matthews E. K. Electrical activity in pancreatic islet cells: effect of ions. J Physiol. 1970 Sep;210(2):265–275. doi: 10.1113/jphysiol.1970.sp009208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dean P. M., Matthews E. K. Glucose-induced electrical activity in pancreatic islet cells. J Physiol. 1970 Sep;210(2):255–264. doi: 10.1113/jphysiol.1970.sp009207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dryselius S., Lund P. E., Gylfe E., Hellman B. Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells. Biochem Biophys Res Commun. 1994 Nov 30;205(1):880–885. doi: 10.1006/bbrc.1994.2746. [DOI] [PubMed] [Google Scholar]
  17. Falke L. C., Gillis K. D., Pressel D. M., Misler S. 'Perforated patch recording' allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet B cells. FEBS Lett. 1989 Jul 17;251(1-2):167–172. doi: 10.1016/0014-5793(89)81448-6. [DOI] [PubMed] [Google Scholar]
  18. Fatherazi S., Cook D. L. Specificity of tetraethylammonium and quinine for three K channels in insulin-secreting cells. J Membr Biol. 1991 Mar;120(2):105–114. doi: 10.1007/BF01872393. [DOI] [PubMed] [Google Scholar]
  19. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  20. Henquin J. C. Adenosine triphosphate-sensitive K+ channels may not be the sole regulators of glucose-induced electrical activity in pancreatic B-cells. Endocrinology. 1992 Jul;131(1):127–131. doi: 10.1210/endo.131.1.1611991. [DOI] [PubMed] [Google Scholar]
  21. Henquin J. C. Regulation of insulin release by ionic and electrical events in B cells. Horm Res. 1987;27(3):168–178. doi: 10.1159/000180806. [DOI] [PubMed] [Google Scholar]
  22. Hopkins W. F., Satin L. S., Cook D. L. Inactivation kinetics and pharmacology distinguish two calcium currents in mouse pancreatic B-cells. J Membr Biol. 1991 Feb;119(3):229–239. doi: 10.1007/BF01868728. [DOI] [PubMed] [Google Scholar]
  23. Keahey H. H., Rajan A. S., Boyd A. E., 3rd, Kunze D. L. Characterization of voltage-dependent Ca2+ channels in beta-cell line. Diabetes. 1989 Feb;38(2):188–193. doi: 10.2337/diab.38.2.188. [DOI] [PubMed] [Google Scholar]
  24. Kinard T. A., Satin L. S. Temperature modulates the Ca2+ current of HIT-T15 and mouse pancreatic beta-cells. Cell Calcium. 1996 Dec;20(6):475–482. doi: 10.1016/s0143-4160(96)90089-5. [DOI] [PubMed] [Google Scholar]
  25. Kitasato H., Kai R., Ding W. G., Omatsu-Kanbe M. The intrinsic rhythmicity of spike-burst generation in pancreatic beta-cells and intercellular interaction within an islet. Jpn J Physiol. 1996 Oct;46(5):363–373. doi: 10.2170/jjphysiol.46.363. [DOI] [PubMed] [Google Scholar]
  26. Larsson O., Kindmark H., Brandstrom R., Fredholm B., Berggren P. O. Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5161–5165. doi: 10.1073/pnas.93.10.5161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ma M., Koester J. The role of K+ currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis. J Neurosci. 1996 Jul 1;16(13):4089–4101. doi: 10.1523/JNEUROSCI.16-13-04089.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Misler S., Barnett D. W., Gillis K. D., Pressel D. M. Electrophysiology of stimulus-secretion coupling in human beta-cells. Diabetes. 1992 Oct;41(10):1221–1228. doi: 10.2337/diab.41.10.1221. [DOI] [PubMed] [Google Scholar]
  29. Misler S., Falke L. C., Gillis K., McDaniel M. L. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7119–7123. doi: 10.1073/pnas.83.18.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miura Y., Henquin J. C., Gilon P. Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic beta-cells by both direct and indirect mechanisms. J Physiol. 1997 Sep 1;503(Pt 2):387–398. doi: 10.1111/j.1469-7793.1997.387bh.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ribalet B., Beigelman P. M. Calcium action potentials and potassium permeability activation in pancreatic beta-cells. Am J Physiol. 1980 Sep;239(3):C124–C133. doi: 10.1152/ajpcell.1980.239.3.C124. [DOI] [PubMed] [Google Scholar]
  32. Ribalet B., Beigelman P. M. Effects of divalent cations on beta-cell electrical activity. Am J Physiol. 1981 Jul;241(1):C59–C67. doi: 10.1152/ajpcell.1981.241.1.C59. [DOI] [PubMed] [Google Scholar]
  33. Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol. 1986 May;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rorsman P., Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch. 1985 Dec;405(4):305–309. doi: 10.1007/BF00595682. [DOI] [PubMed] [Google Scholar]
  35. Rosario L. M., Atwater I., Scott A. M. Pulsatile insulin release and electrical activity from single ob/ob mouse islets of Langerhans. Adv Exp Med Biol. 1986;211:413–425. doi: 10.1007/978-1-4684-5314-0_40. [DOI] [PubMed] [Google Scholar]
  36. Santerre R. F., Cook R. A., Crisel R. M., Sharp J. D., Schmidt R. J., Williams D. C., Wilson C. P. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4339–4343. doi: 10.1073/pnas.78.7.4339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Satin L. S., Cook D. L. Calcium current inactivation in insulin-secreting cells is mediated by calcium influx and membrane depolarization. Pflugers Arch. 1989 May;414(1):1–10. doi: 10.1007/BF00585619. [DOI] [PubMed] [Google Scholar]
  38. Satin L. S., Cook D. L. Evidence for two calcium currents in insulin-secreting cells. Pflugers Arch. 1988 Apr;411(4):401–409. doi: 10.1007/BF00587719. [DOI] [PubMed] [Google Scholar]
  39. Satin L. S., Tavalin S. J., Kinard T. A., Teague J. Contribution of L- and non-L-type calcium channels to voltage-gated calcium current and glucose-dependent insulin secretion in HIT-T15 cells. Endocrinology. 1995 Oct;136(10):4589–4601. doi: 10.1210/endo.136.10.7545106. [DOI] [PubMed] [Google Scholar]
  40. Satin L. S., Tavalin S. J., Smolen P. D. Inactivation of HIT cell Ca2+ current by a simulated burst of Ca2+ action potentials. Biophys J. 1994 Jan;66(1):141–148. doi: 10.1016/S0006-3495(94)80759-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sharp A. A., O'Neil M. B., Abbott L. F., Marder E. Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol. 1993 Mar;69(3):992–995. doi: 10.1152/jn.1993.69.3.992. [DOI] [PubMed] [Google Scholar]
  42. Sherman A. Contributions of modeling to understanding stimulus-secretion coupling in pancreatic beta-cells. Am J Physiol. 1996 Aug;271(2 Pt 1):E362–E372. doi: 10.1152/ajpendo.1996.271.2.E362. [DOI] [PubMed] [Google Scholar]
  43. Sherman A., Rinzel J., Keizer J. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys J. 1988 Sep;54(3):411–425. doi: 10.1016/S0006-3495(88)82975-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smith P. A., Ashcroft F. M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett. 1990 Feb 12;261(1):187–190. doi: 10.1016/0014-5793(90)80667-8. [DOI] [PubMed] [Google Scholar]
  45. Smolen P., Rinzel J., Sherman A. Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys J. 1993 Jun;64(6):1668–1680. doi: 10.1016/S0006-3495(93)81539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sturgess N. C., Ashford M. L., Cook D. L., Hales C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985 Aug 31;2(8453):474–475. doi: 10.1016/s0140-6736(85)90403-9. [DOI] [PubMed] [Google Scholar]
  47. Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
  48. Turrigiano G. G., Marder E., Abbott L. F. Cellular short-term memory from a slow potassium conductance. J Neurophysiol. 1996 Feb;75(2):963–966. doi: 10.1152/jn.1996.75.2.963. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES