Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1436–1451. doi: 10.1016/S0006-3495(99)77304-2

Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles.

D L Gantz 1, D Q Wang 1, M C Carey 1, D M Small 1
PMCID: PMC1300121  PMID: 10049325

Abstract

Because gallstones form so frequently in human bile, pathophysiologically relevant supersaturated model biles are commonly employed to study cholesterol crystal formation. We used cryo-transmission electron microscopy, complemented by polarizing light microscopy, to investigate early stages of cholesterol nucleation in model bile. In the system studied, the proposed microscopic sequence involves the evolution of small unilamellar to multilamellar vesicles to lamellar liquid crystals and finally to cholesterol crystals. Small aliquots of a concentrated (total lipid concentration = 29.2 g/dl) model bile containing 8.5% cholesterol, 22.9% egg yolk lecithin, and 68.6% taurocholate (all mole %) were vitrified at 2 min to 20 days after fourfold dilution to induce supersaturation. Mixed micelles together with a category of vesicles denoted primordial, small unilamellar vesicles of two distinct morphologies (sphere/ellipsoid and cylinder/arachoid), large unilamellar vesicles, multilamellar vesicles, and cholesterol monohydrate crystals were imaged. No evidence of aggregation/fusion of small unilamellar vesicles to form multilamellar vesicles was detected. Low numbers of multilamellar vesicles were present, some of which were sufficiently large to be identified as liquid crystals by polarizing light microscopy. Dimensions, surface areas, and volumes of spherical/ellipsoidal and cylindrical/arachoidal vesicles were quantified. Early stages in the separation of vesicles from micelles, referred to as primordial vesicles, were imaged 23-31 min after dilution. Observed structures such as enlarged micelles in primordial vesicle interiors, segments of bilayer, and faceted edges at primordial vesicle peripheries are probably early stages of small unilamellar vesicle assembly. A decrease in the mean surface area of spherical/ellipsoidal vesicles was correlated with the increased production of cholesterol crystals at 10-20 days after supersaturation by dilution, supporting the role of small unilamellar vesicles as key players in cholesterol nucleation and as cholesterol donors to crystals. This is the first visualization of an intermediate structure that has been temporally linked to the development of small unilamellar vesicles in the separation of vesicles from micelles in a model bile and suggests a time-resolved system for further investigation.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Bellare J. R., Davis H. T., Scriven L. E., Talmon Y. Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech. 1988 Sep;10(1):87–111. doi: 10.1002/jemt.1060100111. [DOI] [PubMed] [Google Scholar]
  3. Carey M. C., Cohen D. E. Update on physical state of bile. Ital J Gastroenterol. 1995 Mar;27(2):92–100. [PubMed] [Google Scholar]
  4. Carey M. C. Critical tables for calculating the cholesterol saturation of native bile. J Lipid Res. 1978 Nov;19(8):945–955. [PubMed] [Google Scholar]
  5. Carey M. C., Small D. M. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. 1978 Apr;61(4):998–1026. doi: 10.1172/JCI109025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen D. E., Carey M. C. Rapid (1 hour) high performance gel filtration chromatography resolves coexisting simple micelles, mixed micelles, and vesicles in bile. J Lipid Res. 1990 Nov;31(11):2103–2112. [PubMed] [Google Scholar]
  7. Cohen D. E., Fisch M. R., Carey M. C. Principles of laser light-scattering spectroscopy: applications to the physicochemical study of model and native biles. Hepatology. 1990 Sep;12(3 Pt 2):113S–122S. [PubMed] [Google Scholar]
  8. Cohen D. E., Kaler E. W., Carey M. C. Cholesterol carriers in human bile: are "lamellae" involved? Hepatology. 1993 Dec;18(6):1522–1531. [PubMed] [Google Scholar]
  9. Cohen D. E., Thurston G. M., Chamberlin R. A., Benedek G. B., Carey M. C. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Biochemistry. 1998 Oct 20;37(42):14798–14814. doi: 10.1021/bi980182y. [DOI] [PubMed] [Google Scholar]
  10. Cyrklaff M., Adrian M., Dubochet J. Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J Electron Microsc Tech. 1990 Dec;16(4):351–355. doi: 10.1002/jemt.1060160407. [DOI] [PubMed] [Google Scholar]
  11. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  12. Frederik P. M., Stuart M. C., Bomans P. H., Busing W. M. Phospholipid, nature's own slide and cover slip for cryo-electron microscopy. J Microsc. 1989 Jan;153(Pt 1):81–92. doi: 10.1111/j.1365-2818.1989.tb01469.x. [DOI] [PubMed] [Google Scholar]
  13. Fromm H., Amin P., Klein H., Kupke I. Use of a simple enzymatic assay for cholesterol analysis in human bile. J Lipid Res. 1980 Feb;21(2):259–261. [PubMed] [Google Scholar]
  14. Fudim-Levin E., Bor A., Kaplun A., Talmon Y., Lichtenberg D. Cholesterol precipitation from cholesterol-supersaturated bile models. Biochim Biophys Acta. 1995 Oct 26;1259(1):23–28. doi: 10.1016/0005-2760(95)00119-w. [DOI] [PubMed] [Google Scholar]
  15. Gilat T., Sömjen G. J. Phospholipid vesicles and other cholesterol carriers in bile. Biochim Biophys Acta. 1996 Jun 10;1286(2):95–115. doi: 10.1016/0304-4157(96)00005-6. [DOI] [PubMed] [Google Scholar]
  16. Groen A. K., Ottenhoff R., Jansen P. L., van Marle J., Tytgat G. N. Effect of cholesterol nucleation-promoting activity on cholesterol solubilization in model bile. J Lipid Res. 1989 Jan;30(1):51–58. [PubMed] [Google Scholar]
  17. Halpern Z., Dudley M. A., Kibe A., Lynn M. P., Breuer A. C., Holzbach R. T. Rapid vesicle formation and aggregation in abnormal human biles. A time-lapse video-enhanced contrast microscopy study. Gastroenterology. 1986 Apr;90(4):875–885. doi: 10.1016/0016-5085(86)90863-2. [DOI] [PubMed] [Google Scholar]
  18. Halpern Z., Dudley M. A., Lynn M. P., Nader J. M., Breuer A. C., Holzbach R. T. Vesicle aggregation in model systems of supersaturated bile: relation to crystal nucleation and lipid composition of the vesicular phase. J Lipid Res. 1986 Mar;27(3):295–306. [PubMed] [Google Scholar]
  19. Howell J. I., Lucy J. A., Pirola R. C., Bouchier I. A. Macromolecular assemblies of lipid in bile. Biochim Biophys Acta. 1970 Jun 9;210(1):1–6. doi: 10.1016/0005-2760(70)90055-x. [DOI] [PubMed] [Google Scholar]
  20. Johnson S. M., Buttress N. The osmotic insensitivity of sonicated liposomes and the density of phospholipid-cholesterol mixtures. Biochim Biophys Acta. 1973 Apr 25;307(1):20–26. doi: 10.1016/0005-2736(73)90021-7. [DOI] [PubMed] [Google Scholar]
  21. Kaplun A., Konikoff F. M., Eitan A., Rubin M., Vilan A., Lichtenberg D., Gilat T., Talmon Y. Imaging supramolecular aggregates in bile models and human bile. Microsc Res Tech. 1997 Oct 1;39(1):85–96. doi: 10.1002/(SICI)1097-0029(19971001)39:1<85::AID-JEMT7>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  22. Kaplun A., Talmon Y., Konikoff F. M., Rubin M., Eitan A., Tadmor M., Lichtenberg D. Direct visualization of lipid aggregates in native human bile by light- and cryo-transmission electron-microscopy. FEBS Lett. 1994 Feb 28;340(1-2):78–82. doi: 10.1016/0014-5793(94)80176-2. [DOI] [PubMed] [Google Scholar]
  23. Klösgen B., Helfrich W. Special features of phosphatidylcholine vesicles as seen in cryo-transmission electron microscopy. Eur Biophys J. 1993;22(5):329–340. doi: 10.1007/BF00213556. [DOI] [PubMed] [Google Scholar]
  24. Konikoff F. M., Chung D. S., Donovan J. M., Small D. M., Carey M. C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J Clin Invest. 1992 Sep;90(3):1155–1160. doi: 10.1172/JCI115935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lasic D. D. The mechanism of vesicle formation. Biochem J. 1988 Nov 15;256(1):1–11. doi: 10.1042/bj2560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Little T. E., Lee S. P., Madani H., Kaler E. W., Chinn K. Interconversions of lipid aggregates in rat and model bile. Am J Physiol. 1991 Jan;260(1 Pt 1):G70–G79. doi: 10.1152/ajpgi.1991.260.1.G70. [DOI] [PubMed] [Google Scholar]
  27. Long M. A., Kaler E. W., Lee S. P. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions. Biophys J. 1994 Oct;67(4):1733–1742. doi: 10.1016/S0006-3495(94)80647-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mazer N. A., Benedek G. B., Carey M. C. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry. 1980 Feb 19;19(4):601–615. doi: 10.1021/bi00545a001. [DOI] [PubMed] [Google Scholar]
  29. Mazer N. A., Carey M. C., Kwasnick R. F., Benedek G. B. Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry. 1979 Jul 10;18(14):3064–3075. doi: 10.1021/bi00581a024. [DOI] [PubMed] [Google Scholar]
  30. Mazer N. A., Carey M. C. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Biochemistry. 1983 Jan 18;22(2):426–442. doi: 10.1021/bi00271a029. [DOI] [PubMed] [Google Scholar]
  31. Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mui B. L., Döbereiner H. G., Madden T. D., Cullis P. R. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J. 1995 Sep;69(3):930–941. doi: 10.1016/S0006-3495(95)79967-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nichols J. W., Ozarowski J. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Biochemistry. 1990 May 15;29(19):4600–4606. doi: 10.1021/bi00471a014. [DOI] [PubMed] [Google Scholar]
  34. Pattinson N. R., Chapman B. A. Distribution of biliary cholesterol between mixed micelles and nonmicelles in relation to fasting and feeding in humans. Gastroenterology. 1986 Sep;91(3):697–702. doi: 10.1016/0016-5085(86)90641-4. [DOI] [PubMed] [Google Scholar]
  35. Peled Y., Halpern Z., Baruch R., Goldman G., Gilat T. Cholesterol nucleation from its carriers in human bile. Hepatology. 1988 Jul-Aug;8(4):914–918. doi: 10.1002/hep.1840080435. [DOI] [PubMed] [Google Scholar]
  36. Pope J. L. Crystallization of sodium taurocholate. J Lipid Res. 1967 Mar;8(2):146–147. [PubMed] [Google Scholar]
  37. Shankland W. The equilibrium and structure of lecithin-cholate mixed micelles. Chem Phys Lipids. 1970 Apr;4(2):109–130. doi: 10.1016/0009-3084(70)90042-3. [DOI] [PubMed] [Google Scholar]
  38. Small D. M. Cholesterol nucleation and growth in gallstone formation. N Engl J Med. 1980 Jun 5;302(23):1305–1307. doi: 10.1056/NEJM198006053022309. [DOI] [PubMed] [Google Scholar]
  39. Sömjen G. J., Marikovsky Y., Lelkes P., Gilat T. Cholesterol-phospholipid vesicles in human bile: an ultrastructural study. Biochim Biophys Acta. 1986 Oct 24;879(1):14–21. doi: 10.1016/0005-2760(86)90260-2. [DOI] [PubMed] [Google Scholar]
  40. Sömjen G. J., Marikovsky Y., Wachtel E., Harvey P. R., Rosenberg R., Strasberg S. M., Gilat T. Phospholipid lamellae are cholesterol carriers in human bile. Biochim Biophys Acta. 1990 Jan 16;1042(1):28–35. doi: 10.1016/0005-2760(90)90052-y. [DOI] [PubMed] [Google Scholar]
  41. Sömjen G. J., Rosenberg R., Gilat T. Gel filtration and quasielastic light scattering studies of human bile. Hepatology. 1990 Sep;12(3 Pt 2):123S–129S. [PubMed] [Google Scholar]
  42. Tao S., Tazuma S., Kajiyama G. Apolipoprotein A-I stabilizes phospholipid lamellae and thus prolongs nucleation time in model bile systems: an ultrastructural study. Biochim Biophys Acta. 1993 Feb 10;1166(1):25–30. doi: 10.1016/0005-2760(93)90279-i. [DOI] [PubMed] [Google Scholar]
  43. Toor E. W., Evans D. F., Cussler E. L. Cholesterol monohydrate growth in model bile solutions. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6230–6234. doi: 10.1073/pnas.75.12.6230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Turley S. D., Dietschy J. M. Re-evaluation of the 3 alpha-hydroxysteroid dehydrogenase assay for total bile acids in bile. J Lipid Res. 1978 Sep;19(7):924–928. [PubMed] [Google Scholar]
  45. Ulmius J., Lindblom G., Wennerström H., Johansson L. B., Fontell K., Söderman O., Arvidson G. Molecular organization in the liquid--crystalline phases of lecithin--sodium cholate-water systems studied by nuclear magnetic resonance. Biochemistry. 1982 Mar 30;21(7):1553–1560. doi: 10.1021/bi00536a014. [DOI] [PubMed] [Google Scholar]
  46. Vinson P. K., Talmon Y., Walter A. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J. 1989 Oct;56(4):669–681. doi: 10.1016/S0006-3495(89)82714-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Walter A., Vinson P. K., Kaplun A., Talmon Y. Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition. Biophys J. 1991 Dec;60(6):1315–1325. doi: 10.1016/S0006-3495(91)82169-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang D. Q., Carey M. C. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res. 1996 Dec;37(12):2539–2549. [PubMed] [Google Scholar]
  49. Wang D. Q., Carey M. C. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J Lipid Res. 1996 Mar;37(3):606–630. [PubMed] [Google Scholar]
  50. Wang D. Q., Paigen B., Carey M. C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: physical-chemistry of gallbladder bile. J Lipid Res. 1997 Jul;38(7):1395–1411. [PubMed] [Google Scholar]
  51. van de Heijning B. J., Stolk M. F., van Erpecum K. J., Renooij W., van Berge Henegouwen G. P. The effects of bile salt hydrophobicity on model bile vesicle morphology. Biochim Biophys Acta. 1994 May 13;1212(2):203–210. doi: 10.1016/0005-2760(94)90254-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES