Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1457–1468. doi: 10.1016/S0006-3495(99)77306-6

Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.

A Kitamura 1, T Kiyota 1, M Tomohiro 1, A Umeda 1, S Lee 1, T Inoue 1, G Sugihara 1
PMCID: PMC1300123  PMID: 10049327

Abstract

Lipid-peptide interaction has been investigated using cationic amphiphilic alpha-helical peptides and systematically varying their hydrophobic-hydrophilic balance (HHB). The influence of the peptides on neutral and acidic liposomes was examined by 1) Trp fluorescence quenched by brominated phospholipid, 2) membrane-clearing ability, 3) size determination of liposomes by dynamic light scattering, 4) morphological observation by electron microscopy, and 5) ability to form planar lipid bilayers from channels. The peptides examined consist of hydrophobic Leu and hydrophilic Lys residues with ratios 13:5, 11:7, 9:9, 7:11, and 5:13 (abbreviated as Hels 13-5, 11-7, 9-9, 7-11, and 5-13, respectively; Kiyota, T., S. Lee, and G. Sugihara. 1996. Biochemistry. 35:13196-13204). The most hydrophobic peptide (Hel 13-5) induced a twisted ribbon-like fibril structure for egg PC liposomes. In a 3/1 (egg PC/egg PG) lipid mixture, Hel 13-5 addition caused fusion of the liposomes. Hel 13-5 formed ion channels in neutral lipid bilayer (egg PE/egg PC = 7/3) at low peptide concentrations, but not in an acidic bilayer (egg PE/brain PS = 7/3). The peptides with hydrophobicity less than Hel 13-5 (Hels 11-7 and Hel 9-9) were able to partially immerse their hydrophobic part of the amphiphilic helix in lipid bilayers and fragment liposome to small bicelles or micelles, and then the bicelles aggregated to form a larger assembly. Peptides Hel 11-7 and Hel 9-9 each formed strong ion channels. Peptides (Hel 7-11 and Hel 5-13) with a more hydrophilic HHB interacted with an acidic lipid bilayer by charge interaction, in which the former immerses the hydrophobic part in lipid bilayer, and the latter did not immerse, and formed large assemblies by aggregation of original liposomes. The present study clearly showed that hydrophobic-hydrophilic balance of a peptide is a crucial factor in understanding lipid-peptide interactions.

Full Text

The Full Text of this article is available as a PDF (429.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agawa Y., Lee S., Ono S., Aoyagi H., Ohno M., Taniguchi T., Anzai K., Kirino Y. Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity of basic amphipathic alpha-helical model peptides of various chain lengths. J Biol Chem. 1991 Oct 25;266(30):20218–20222. [PubMed] [Google Scholar]
  2. Anzai K., Hamasuna M., Kadono H., Lee S., Aoyagi H., Kirino Y. Formation of ion channels in planar lipid bilayer membranes by synthetic basic peptides. Biochim Biophys Acta. 1991 May 7;1064(2):256–266. doi: 10.1016/0005-2736(91)90310-5. [DOI] [PubMed] [Google Scholar]
  3. Blondelle S. E., Forood B., Houghten R. A., Pérez-Payá E. Secondary structure induction in aqueous vs membrane-like environments. Biopolymers. 1997 Oct 5;42(4):489–498. doi: 10.1002/(SICI)1097-0282(19971005)42:4<489::AID-BIP11>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  4. Blondelle S. E., Houghten R. A. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992 Dec 22;31(50):12688–12694. doi: 10.1021/bi00165a020. [DOI] [PubMed] [Google Scholar]
  5. Brasseur R. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem. 1991 Aug 25;266(24):16120–16127. [PubMed] [Google Scholar]
  6. Brasseur R., Pillot T., Lins L., Vandekerckhove J., Rosseneu M. Peptides in membranes: tipping the balance of membrane stability. Trends Biochem Sci. 1997 May;22(5):167–171. doi: 10.1016/s0968-0004(97)01047-5. [DOI] [PubMed] [Google Scholar]
  7. Chung L. A., Thompson T. E. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers. Biochemistry. 1996 Sep 3;35(35):11343–11354. doi: 10.1021/bi960080c. [DOI] [PubMed] [Google Scholar]
  8. Cornut I., Büttner K., Dasseux J. L., Dufourcq J. The amphipathic alpha-helix concept. Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin. FEBS Lett. 1994 Jul 25;349(1):29–33. doi: 10.1016/0014-5793(94)00621-0. [DOI] [PubMed] [Google Scholar]
  9. Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996 Sep 24;35(38):12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  10. Dathe M., Wieprecht T., Nikolenko H., Handel L., Maloy W. L., MacDonald D. L., Beyermann M., Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 1997 Feb 17;403(2):208–212. doi: 10.1016/s0014-5793(97)00055-0. [DOI] [PubMed] [Google Scholar]
  11. Dawidowicz E. A., Rothman J. E. Fusion and protein-mediated phospholipid exchange studied with single bilayer phosphatidylcholine vesicles of different density. Biochim Biophys Acta. 1976 Dec 14;455(3):621–630. doi: 10.1016/0005-2736(76)90036-5. [DOI] [PubMed] [Google Scholar]
  12. Deber C. M., Goto N. K. Folding proteins into membranes. Nat Struct Biol. 1996 Oct;3(10):815–818. doi: 10.1038/nsb1096-815. [DOI] [PubMed] [Google Scholar]
  13. Dufourcq J., Faucon J. F., Fourche G., Dasseux J. L., Le Maire M., Gulik-Krzywicki T. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim Biophys Acta. 1986 Jul 10;859(1):33–48. doi: 10.1016/0005-2736(86)90315-9. [DOI] [PubMed] [Google Scholar]
  14. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  15. Epand R. M., Shai Y., Segrest J. P., Anantharamaiah G. M. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37(5):319–338. doi: 10.1002/bip.360370504. [DOI] [PubMed] [Google Scholar]
  16. Ghosh A. K., Rukmini R., Chattopadhyay A. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry. 1997 Nov 25;36(47):14291–14305. doi: 10.1021/bi971933j. [DOI] [PubMed] [Google Scholar]
  17. Hancock R. E. Peptide antibiotics. Lancet. 1997 Feb 8;349(9049):418–422. doi: 10.1016/S0140-6736(97)80051-7. [DOI] [PubMed] [Google Scholar]
  18. Iwata T., Lee S., Oishi O., Aoyagi H., Ohno M., Anzai K., Kirino Y., Sugihara G. Design and synthesis of amphipathic 3(10)-helical peptides and their interactions with phospholipid bilayers and ion channel formation. J Biol Chem. 1994 Feb 18;269(7):4928–4933. [PubMed] [Google Scholar]
  19. Kini R. M., Evans H. J. A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. Int J Pept Protein Res. 1989 Oct;34(4):277–286. doi: 10.1111/j.1399-3011.1989.tb01575.x. [DOI] [PubMed] [Google Scholar]
  20. Kiyota T., Lee S., Sugihara G. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry. 1996 Oct 8;35(40):13196–13204. doi: 10.1021/bi961289t. [DOI] [PubMed] [Google Scholar]
  21. Lee S., Iwata T., Oyagi H., Aoyagi H., Ohno M., Anzai K., Kirino Y., Sugihara G. Effect of salts on conformational change of basic amphipathic peptides from beta-structure to alpha-helix in the presence of phospholipid liposomes and their channel-forming ability. Biochim Biophys Acta. 1993 Sep 5;1151(1):76–82. doi: 10.1016/0005-2736(93)90073-9. [DOI] [PubMed] [Google Scholar]
  22. Lee S., Kiyota T., Kunitake T., Matsumoto E., Yamashita S., Anzai K., Sugihara G. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers. Biochemistry. 1997 Apr 1;36(13):3782–3791. doi: 10.1021/bi962451v. [DOI] [PubMed] [Google Scholar]
  23. Liu L. P., Deber C. M. Anionic phospholipids modulate peptide insertion into membranes. Biochemistry. 1997 May 6;36(18):5476–5482. doi: 10.1021/bi970030n. [DOI] [PubMed] [Google Scholar]
  24. Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
  25. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  26. McLean L. R., Hagaman K. A., Owen T. J., Krstenansky J. L. Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes. Biochemistry. 1991 Jan 8;30(1):31–37. doi: 10.1021/bi00215a005. [DOI] [PubMed] [Google Scholar]
  27. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oren Z., Hong J., Shai Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem. 1997 Jun 6;272(23):14643–14649. doi: 10.1074/jbc.272.23.14643. [DOI] [PubMed] [Google Scholar]
  29. Oren Z., Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry. 1997 Feb 18;36(7):1826–1835. doi: 10.1021/bi962507l. [DOI] [PubMed] [Google Scholar]
  30. Park N. G., Yamato Y., Lee S., Sugihara G. Interaction of mastoparan-B from venom of a hornet in Taiwan with phospholipid bilayers and its antimicrobial activity. Biopolymers. 1995 Dec;36(6):793–801. doi: 10.1002/bip.360360611. [DOI] [PubMed] [Google Scholar]
  31. Polozov I. V., Polozova A. I., Tytler E. M., Anantharamaiah G. M., Segrest J. P., Woolley G. A., Epand R. M. Role of lipids in the permeabilization of membranes by class L amphipathic helical peptides. Biochemistry. 1997 Jul 29;36(30):9237–9245. doi: 10.1021/bi970045l. [DOI] [PubMed] [Google Scholar]
  32. Reynaud J. A., Grivet J. P., Sy D., Trudelle Y. Interactions of basic amphiphilic peptides with dimyristoylphosphatidylcholine small unilamellar vesicles: optical, NMR, and electron microscopy studies and conformational calculations. Biochemistry. 1993 May 18;32(19):4997–5008. doi: 10.1021/bi00070a005. [DOI] [PubMed] [Google Scholar]
  33. Saberwal G., Nagaraj R. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta. 1994 Jun 29;1197(2):109–131. doi: 10.1016/0304-4157(94)90002-7. [DOI] [PubMed] [Google Scholar]
  34. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  35. Sessa G., Freer J. H., Colacicco G., Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969 Jul 10;244(13):3575–3582. [PubMed] [Google Scholar]
  36. Shai Y., Oren Z. Diastereoisomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem. 1996 Mar 29;271(13):7305–7308. doi: 10.1074/jbc.271.13.7305. [DOI] [PubMed] [Google Scholar]
  37. Silvestro L., Gupta K., Weiser J. N., Axelsen P. H. The concentration-dependent membrane activity of cecropin A. Biochemistry. 1997 Sep 23;36(38):11452–11460. doi: 10.1021/bi9630826. [DOI] [PubMed] [Google Scholar]
  38. Suenaga M., Lee S., Park N. G., Aoyagi H., Kato T., Umeda A., Amako K. Basic amphipathic helical peptides induce destabilization and fusion of acidic and neutral liposomes. Biochim Biophys Acta. 1989 May 19;981(1):143–150. doi: 10.1016/0005-2736(89)90092-8. [DOI] [PubMed] [Google Scholar]
  39. Surewicz W. K., Epand R. M. Role of peptide structure in lipid-peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles. Biochemistry. 1984 Dec 4;23(25):6072–6077. doi: 10.1021/bi00320a026. [DOI] [PubMed] [Google Scholar]
  40. Tytler E. M., Segrest J. P., Epand R. M., Nie S. Q., Epand R. F., Mishra V. K., Venkatachalapathi Y. V., Anantharamaiah G. M. Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem. 1993 Oct 15;268(29):22112–22118. [PubMed] [Google Scholar]
  41. Wieprecht T., Dathe M., Beyermann M., Krause E., Maloy W. L., MacDonald D. L., Bienert M. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry. 1997 May 20;36(20):6124–6132. doi: 10.1021/bi9619987. [DOI] [PubMed] [Google Scholar]
  42. Yoshimura T., Goto Y., Aimoto S. Fusion of phospholipid vesicles induced by an amphiphilic model peptide: close correlation between fusogenicity and hydrophobicity of the peptide in an alpha-helix. Biochemistry. 1992 Jul 7;31(26):6119–6126. doi: 10.1021/bi00141a023. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES