Abstract
Parvalbumin (PA) is an intracellular Ca2+-binding protein found in some muscle and nerves. Its ability to bind Ca2+ and facilitate skeletal muscle relaxation is limited by its Mg2+ off-rate. EDTA serves as an "artificial" PA in that it exhibited similar rate constants for Mg2+ (3 s-1) and Ca2+ (0.7 s-1) dissociation at 10 degrees C. When introduced into frog skeletal muscle, EDTA increased the relaxation rate by approximately 2.7-fold, and with increasing tetanus duration, EDTA lost its ability to contribute to relaxation (and Ca2+ sequestration) at its Mg2+ off-rate. Intracellular EDTA recovered its ability to contribute to muscle relaxation and Ca2+ sequestration at its Ca2+ off-rate. Like PA, EDTA's contribution to muscle relaxation and Ca2+ sequestration was more clearly observed when the SR Ca-ATPase was inhibited. Introduction of EDTA into rat soleus muscle, which has low [PA], increased the relaxation rate in a manner that was analogous to the way in which PA facilitates relaxation of frog skeletal muscle. Thus intracellular EDTA serves as an effective mimic of PA, and its use should aid in our understanding of PA's function in muscle and nerve.
Full Text
The Full Text of this article is available as a PDF (119.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chard P. S., Bleakman D., Christakos S., Fullmer C. S., Miller R. J. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol. 1993 Dec;472:341–357. doi: 10.1113/jphysiol.1993.sp019950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott J. L., Snider W. D. Parvalbumin is a marker of ALS-resistant motor neurons. Neuroreport. 1995 Feb 15;6(3):449–452. doi: 10.1097/00001756-199502000-00011. [DOI] [PubMed] [Google Scholar]
- Gillis J. M. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta. 1985 Jun 3;811(2):97–145. doi: 10.1016/0304-4173(85)90016-3. [DOI] [PubMed] [Google Scholar]
- Gillis J. M., Thomason D., Lefèvre J., Kretsinger R. H. Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil. 1982 Dec;3(4):377–398. doi: 10.1007/BF00712090. [DOI] [PubMed] [Google Scholar]
- Güth K., Potter J. D. Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem. 1987 Oct 5;262(28):13627–13635. [PubMed] [Google Scholar]
- Haiech J., Derancourt J., Pechère J. F., Demaille J. G. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry. 1979 Jun 26;18(13):2752–2758. doi: 10.1021/bi00580a010. [DOI] [PubMed] [Google Scholar]
- Heizmann C. W. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia. 1984 Sep 15;40(9):910–921. doi: 10.1007/BF01946439. [DOI] [PubMed] [Google Scholar]
- Hou T. T., Johnson J. D., Rall J. A. Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol. 1992 Apr;449:399–410. doi: 10.1113/jphysiol.1992.sp019092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou T. T., Johnson J. D., Rall J. A. Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J Physiol. 1991 Sep;441:285–304. doi: 10.1113/jphysiol.1991.sp018752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving M., Maylie J., Sizto N. L., Chandler W. K. Simultaneous monitoring of changes in magnesium and calcium concentrations in frog cut twitch fibers containing antipyrylazo III. J Gen Physiol. 1989 Apr;93(4):585–608. doi: 10.1085/jgp.93.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang Y., Johnson J. D., Rall J. A. Parvalbumin relaxes frog skeletal muscle when sarcoplasmic reticulum Ca(2+)-ATPase is inhibited. Am J Physiol. 1996 Feb;270(2 Pt 1):C411–C417. doi: 10.1152/ajpcell.1996.270.2.C411. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Collins J. H., Potter J. D. Dansylaziridine-labeled troponin C. A fluorescent probe of Ca2+ binding to the Ca2+-specific regulatory sites. J Biol Chem. 1978 Sep 25;253(18):6451–6458. [PubMed] [Google Scholar]
- Johnson J. D., Jiang Y., Flynn M. Modulation of Ca2+ transients and tension by intracellular EGTA in intact frog muscle fibers. Am J Physiol. 1997 May;272(5 Pt 1):C1437–C1444. doi: 10.1152/ajpcell.1997.272.5.C1437. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Nakkula R. J., Vasulka C., Smillie L. B. Modulation of Ca2+ exchange with the Ca(2+)-specific regulatory sites of troponin C. J Biol Chem. 1994 Mar 25;269(12):8919–8923. [PubMed] [Google Scholar]
- Kawaguchi Y., Katsumaru H., Kosaka T., Heizmann C. W., Hama K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res. 1987 Jul 28;416(2):369–374. doi: 10.1016/0006-8993(87)90921-8. [DOI] [PubMed] [Google Scholar]
- Müntener M., Käser L., Weber J., Berchtold M. W. Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6504–6508. doi: 10.1073/pnas.92.14.6504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa Y., Tanokura M. Steady-state properties of calcium binding to parvalbumins from bullfrog skeletal muscle: effects of Mg2+, pH, ionic strength, and temperature. J Biochem. 1986 Jan;99(1):73–80. doi: 10.1093/oxfordjournals.jbchem.a135481. [DOI] [PubMed] [Google Scholar]
- Smith P. D., Liesegang G. W., Berger R. L., Czerlinski G., Podolsky R. J. A stopped-flow investigation of calcium ion binding by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Anal Biochem. 1984 Nov 15;143(1):188–195. doi: 10.1016/0003-2697(84)90575-x. [DOI] [PubMed] [Google Scholar]
- Zhao M., Hollingworth S., Baylor S. M. AM-loading of fluorescent Ca2+ indicators into intact single fibers of frog muscle. Biophys J. 1997 Jun;72(6):2736–2747. doi: 10.1016/S0006-3495(97)78916-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao M., Hollingworth S., Baylor S. M. Properties of tri- and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers. Biophys J. 1996 Feb;70(2):896–916. doi: 10.1016/S0006-3495(96)79633-9. [DOI] [PMC free article] [PubMed] [Google Scholar]