Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1571–1579. doi: 10.1016/S0006-3495(99)77316-9

His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes.

D J Quirk 1, R T Raines 1
PMCID: PMC1300133  PMID: 10049337

Abstract

Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.

Full Text

The Full Text of this article is available as a PDF (113.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  2. Ash E. L., Sudmeier J. L., De Fabo E. C., Bachovchin W. W. A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment. Science. 1997 Nov 7;278(5340):1128–1132. doi: 10.1126/science.278.5340.1128. [DOI] [PubMed] [Google Scholar]
  3. Beintema J. J., Schüller C., Irie M., Carsana A. Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol. 1988;51(3):165–192. doi: 10.1016/0079-6107(88)90001-6. [DOI] [PubMed] [Google Scholar]
  4. Cassidy C. S., Lin J., Frey P. A. A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond. Biochemistry. 1997 Apr 15;36(15):4576–4584. doi: 10.1021/bi962013o. [DOI] [PubMed] [Google Scholar]
  5. Cederholm M. T., Stuckey J. A., Doscher M. S., Lee L. Histidine pKa shifts accompanying the inactivating Asp121----Asn substitution in a semisynthetic bovine pancreatic ribonuclease. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8116–8120. doi: 10.1073/pnas.88.18.8116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chivers P. T., Prehoda K. E., Volkman B. F., Kim B. M., Markley J. L., Raines R. T. Microscopic pKa values of Escherichia coli thioredoxin. Biochemistry. 1997 Dec 2;36(48):14985–14991. doi: 10.1021/bi970071j. [DOI] [PubMed] [Google Scholar]
  7. Cleland W. W., Kreevoy M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994 Jun 24;264(5167):1887–1890. doi: 10.1126/science.8009219. [DOI] [PubMed] [Google Scholar]
  8. Cleland W. W. Low-barrier hydrogen bonds and low fractionation factor bases in enzymatic reactions. Biochemistry. 1992 Jan 21;31(2):317–319. doi: 10.1021/bi00117a001. [DOI] [PubMed] [Google Scholar]
  9. Cuchillo C. M., Parés X., Guasch A., Barman T., Travers F., Nogués M. V. The role of 2',3'-cyclic phosphodiesters in the bovine pancreatic ribonuclease A catalysed cleavage of RNA: intermediates or products? FEBS Lett. 1993 Nov 1;333(3):207–210. doi: 10.1016/0014-5793(93)80654-d. [DOI] [PubMed] [Google Scholar]
  10. Eftink M. R., Biltonen R. L. Energetics of ribonuclease A catalysis. 1. pH, ionic strength, and solvent isotope dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate. Biochemistry. 1983 Oct 25;22(22):5123–5134. doi: 10.1021/bi00291a011. [DOI] [PubMed] [Google Scholar]
  11. FINDLAY D., HERRIES D. G., MATHIAS A. P., RABIN B. R., ROSS C. A. The active site and mechanism of action of bovine pancreatic ribonuclease. Nature. 1961 May 27;190:781–784. doi: 10.1038/190781a0. [DOI] [PubMed] [Google Scholar]
  12. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  13. Fisher B. M., Grilley J. E., Raines R. T. A new remote subsite in ribonuclease A. J Biol Chem. 1998 Dec 18;273(51):34134–34138. doi: 10.1074/jbc.273.51.34134. [DOI] [PubMed] [Google Scholar]
  14. Fisher B. M., Schultz L. W., Raines R. T. Coulombic effects of remote subsites on the active site of ribonuclease A. Biochemistry. 1998 Dec 15;37(50):17386–17401. doi: 10.1021/bi981369s. [DOI] [PubMed] [Google Scholar]
  15. Flogel M., Biltonen R. L. The pH dependence of the thermodynamics of the interaction of 3'-cytidine monophosphate with ribonuclease A. Biochemistry. 1975 Jun 17;14(12):2610–2615. doi: 10.1021/bi00683a008. [DOI] [PubMed] [Google Scholar]
  16. Fontecilla-Camps J. C., de Llorens R., le Du M. H., Cuchillo C. M. Crystal structure of ribonuclease A.d(ApTpApApG) complex. Direct evidence for extended substrate recognition. J Biol Chem. 1994 Aug 26;269(34):21526–21531. doi: 10.2210/pdb1rcn/pdb. [DOI] [PubMed] [Google Scholar]
  17. Frey P. A., Whitt S. A., Tobin J. B. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science. 1994 Jun 24;264(5167):1927–1930. doi: 10.1126/science.7661899. [DOI] [PubMed] [Google Scholar]
  18. Gorenstein D. G., Wyrwicz A. 31p NMR study on the binding of 3'-cytidine monophosphate to ribonuclease A. Part I. Biochem Biophys Res Commun. 1973 Oct 1;54(3):976–982. doi: 10.1016/0006-291x(73)90790-0. [DOI] [PubMed] [Google Scholar]
  19. Haffner P. H., Wang J. H. Chemical kinetic and proton magnetic resonance studies of 5'-adenosine monophosphate binding to ribonuclease A. Biochemistry. 1973 Apr 10;12(8):1608–1617. doi: 10.1021/bi00732a023. [DOI] [PubMed] [Google Scholar]
  20. Irie M., Watanabe H., Ohgi K., Tobe M., Matsumura G., Arata Y., Hirose T., Inayama S. Some evidence suggesting the existence of P2 and B3 sites in the active site of bovine pancreatic ribonuclease A. J Biochem. 1984 Mar;95(3):751–759. doi: 10.1093/oxfordjournals.jbchem.a134666. [DOI] [PubMed] [Google Scholar]
  21. Jentoft J. E., Gerken T. A., Jentoft N., Dearborn D. G. [13C]Methylated ribonuclease A. 13C NMR studies of the interaction of lysine 41 with active site ligands. J Biol Chem. 1981 Jan 10;256(1):231–236. [PubMed] [Google Scholar]
  22. Kartha G., Bello J., Harker D. Tertiary structure of ribonuclease. Nature. 1967 Mar 4;213(5079):862–865. doi: 10.1038/213862a0. [DOI] [PubMed] [Google Scholar]
  23. Lenstra J. A., Bolscher B. G., Beintema J. J., Kaptein R. The aromatic residues of bovine pancreatic ribonuclease studied by 1H nuclear magnetic resonance. Eur J Biochem. 1979 Aug 1;98(2):385–397. doi: 10.1111/j.1432-1033.1979.tb13198.x. [DOI] [PubMed] [Google Scholar]
  24. Markley J. L. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. Biochemistry. 1975 Aug 12;14(16):3546–3554. doi: 10.1021/bi00687a006. [DOI] [PubMed] [Google Scholar]
  25. Markley J. L., Finkenstadt W. R. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. III. Mutual electrostatic interaction between histidine residues 12 and 119. Biochemistry. 1975 Aug 12;14(16):3562–3566. doi: 10.1021/bi00687a008. [DOI] [PubMed] [Google Scholar]
  26. McPherson A., Brayer G., Cascio D., Williams R. The mechanism of binding of a polynucleotide chain to pancreatic ribonuclease. Science. 1986 May 9;232(4751):765–768. doi: 10.1126/science.3961503. [DOI] [PubMed] [Google Scholar]
  27. Moussaoui M., Nogués M. V., Guasch A., Barman T., Travers F., Cuchillo C. M. The subsites structure of bovine pancreatic ribonuclease A accounts for the abnormal kinetic behavior with cytidine 2',3'-cyclic phosphate. J Biol Chem. 1998 Oct 2;273(40):25565–25572. doi: 10.1074/jbc.273.40.25565. [DOI] [PubMed] [Google Scholar]
  28. Nogués M. V., Vilanova M., Cuchillo C. M. Bovine pancreatic ribonuclease A as a model of an enzyme with multiple substrate binding sites. Biochim Biophys Acta. 1995 Nov 15;1253(1):16–24. doi: 10.1016/0167-4838(95)00138-k. [DOI] [PubMed] [Google Scholar]
  29. Parés X., Nogués M. V., de Llorens R., Cuchillo C. M. Structure and function of ribonuclease A binding subsites. Essays Biochem. 1991;26:89–103. [PubMed] [Google Scholar]
  30. Quirk D. J., Park C., Thompson J. E., Raines R. T. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes. Biochemistry. 1998 Dec 22;37(51):17958–17964. doi: 10.1021/bi981688j. [DOI] [PubMed] [Google Scholar]
  31. Raines Ronald T. Ribonuclease A. Chem Rev. 1998 May 7;98(3):1045–1066. doi: 10.1021/cr960427h. [DOI] [PubMed] [Google Scholar]
  32. Rico M., Bruix M., Santoro J., Gonzalez C., Neira J. L., Nieto J. L., Herranz J. Sequential 1H-NMR assignment and solution structure of bovine pancreatic ribonuclease A. Eur J Biochem. 1989 Aug 15;183(3):623–638. doi: 10.1111/j.1432-1033.1989.tb21092.x. [DOI] [PubMed] [Google Scholar]
  33. Robertson A. D., Purisima E. O., Eastman M. A., Scheraga H. A. Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution. Biochemistry. 1989 Jul 11;28(14):5930–5938. doi: 10.1021/bi00440a033. [DOI] [PubMed] [Google Scholar]
  34. SELA M., ANFINSEN C. B., HARRINGTON W. F. The correlation of ribonuclease activity with specific aspects of tertiary structure. Biochim Biophys Acta. 1957 Dec;26(3):502–512. doi: 10.1016/0006-3002(57)90096-3. [DOI] [PubMed] [Google Scholar]
  35. Schultz L. W., Quirk D. J., Raines R. T. His...Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes. Biochemistry. 1998 Jun 23;37(25):8886–8898. doi: 10.1021/bi972766q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shrager R. I., Cohen J. S., Heller S. R., Sachs D. H., Schechter A. N. Mathematical models for interacting groups in nuclear magnetic resonance titration curves. Biochemistry. 1972 Feb 15;11(4):541–547. doi: 10.1021/bi00754a010. [DOI] [PubMed] [Google Scholar]
  37. Tanokura M. 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. II. Microenvironments of histidine-12 and histidine-119 of bovine pancreatic ribonuclease A. Biochim Biophys Acta. 1983 Feb 15;742(3):586–596. doi: 10.1016/0167-4838(83)90277-7. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. E., Venegas F. D., Raines R. T. Energetics of catalysis by ribonucleases: fate of the 2',3'-cyclic phosphodiester intermediate. Biochemistry. 1994 Jun 14;33(23):7408–7414. doi: 10.1021/bi00189a047. [DOI] [PubMed] [Google Scholar]
  39. Udgaonkar J. B., Baldwin R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature. 1988 Oct 20;335(6192):694–699. doi: 10.1038/335694a0. [DOI] [PubMed] [Google Scholar]
  40. Wieker H. J., Witzel H. Zum Mechanismus der Ribonuclease-Reaktion. 3. Zuordnung der Kinetischen Parameter k+1, k-1, k+2 und Interpretation von Km. Eur J Biochem. 1967 Apr;1(2):251–258. doi: 10.1111/j.1432-1033.1967.tb00069.x. [DOI] [PubMed] [Google Scholar]
  41. Wlodawer A., Miller M., Sjölin L. Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3628–3631. doi: 10.1073/pnas.80.12.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. deMel V. S., Martin P. D., Doscher M. S., Edwards B. F. Structural changes that accompany the reduced catalytic efficiency of two semisynthetic ribonuclease analogs. J Biol Chem. 1992 Jan 5;267(1):247–256. [PubMed] [Google Scholar]
  43. delCardayré S. B., Raines R. T. A residue to residue hydrogen bond mediates the nucleotide specificity of ribonuclease A. J Mol Biol. 1995 Sep 22;252(3):328–336. doi: 10.1006/jmbi.1995.0500. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES