Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1606–1618. doi: 10.1016/S0006-3495(99)77320-0

Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers.

R E Dale 1, S C Hopkins 1, U A an der Heide 1, T Marszałek 1, M Irving 1, Y E Goldman 1
PMCID: PMC1300137  PMID: 10049341

Abstract

The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters (<P2> and <P4>) of the angular distribution of c relative to F, and <P2a> and <P2e>, the average second-rank order parameters of the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than fluorescence that may be observed using longer-lived optically excited states.

Full Text

The Full Text of this article is available as a PDF (174.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. S., Ling N., Irving M., Goldman Y. E. Orientation changes in myosin regulatory light chains following photorelease of ATP in skinned muscle fibers. Biophys J. 1996 Apr;70(4):1847–1862. doi: 10.1016/S0006-3495(96)79750-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Badea M. G., Brand L. Time-resolved fluorescence measurements. Methods Enzymol. 1979;61:378–425. doi: 10.1016/0076-6879(79)61019-4. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M., Brand L. Time-resolved fluorescence of proteins. Annu Rev Biochem. 1985;54:43–71. doi: 10.1146/annurev.bi.54.070185.000355. [DOI] [PubMed] [Google Scholar]
  4. Berger C. L., Craik J. S., Trentham D. R., Corrie J. E., Goldman Y. E. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain. Biophys J. 1996 Dec;71(6):3330–3343. doi: 10.1016/S0006-3495(96)79526-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biophysical Society 41st annual meeting. New Orleans, Louisiana, 2-6 March 1997. Abstracts. Biophys J. 1997 Feb;72(2 Pt 2):A1–476. [PMC free article] [PubMed] [Google Scholar]
  6. Borejdo J., Putnam S. Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation. Biochim Biophys Acta. 1977 Mar 11;459(3):578–595. doi: 10.1016/0005-2728(77)90056-1. [DOI] [PubMed] [Google Scholar]
  7. Brochon J. C., Wahl P. Measures des déclins de l'anisotropie de fluorescence de la gamma-globuline et de ses fragments Fab, Fc et F(ab) 2 marqués avec le 1-sulfonyl-5-diméthyl-aminonaphtalène. Eur J Biochem. 1972 Jan 31;25(1):20–32. doi: 10.1111/j.1432-1033.1972.tb01662.x. [DOI] [PubMed] [Google Scholar]
  8. Burghardt T. P., Thompson N. L. Motion of myosin cross-bridges in skeletal muscle fibers studied by time-resolved fluorescence anisotropy decay. Biochemistry. 1985 Jul 2;24(14):3731–3735. doi: 10.1021/bi00335a048. [DOI] [PubMed] [Google Scholar]
  9. CHEN R. F., BOWMAN R. L. FLUORESCENCE POLARIZATION: MEASUREMENT WITH ULTRAVIOLET-POLARIZING FILTERS IN A SPECTROPHOTOFLUOROMETER. Science. 1965 Feb 12;147(3659):729–732. doi: 10.1126/science.147.3659.729. [DOI] [PubMed] [Google Scholar]
  10. Hopkins S. C., Sabido-David C., Corrie J. E., Irving M., Goldman Y. E. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. Biophys J. 1998 Jun;74(6):3093–3110. doi: 10.1016/S0006-3495(98)78016-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Irving M., St Claire Allen T., Sabido-David C., Craik J. S., Brandmeier B., Kendrick-Jones J., Corrie J. E., Trentham D. R., Goldman Y. E. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature. 1995 Jun 22;375(6533):688–691. doi: 10.1038/375688a0. [DOI] [PubMed] [Google Scholar]
  12. Irving M. Steady-state polarization from cylindrically symmetric fluorophores undergoing rapid restricted motion. Biophys J. 1996 Apr;70(4):1830–1835. doi: 10.1016/S0006-3495(96)79748-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishiwata S., Kinosita K., Jr, Yoshimura H., Ikegami A. Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements. J Biol Chem. 1987 Jun 15;262(17):8314–8317. [PubMed] [Google Scholar]
  14. Jovin T. M., Bartholdi M., Vaz W. L., Austin R. H. Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy. Ann N Y Acad Sci. 1981;366:176–196. doi: 10.1111/j.1749-6632.1981.tb20753.x. [DOI] [PubMed] [Google Scholar]
  15. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lakowicz J. R., Maliwal B. P. Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys Chem. 1985 Jan;21(1):61–78. doi: 10.1016/0301-4622(85)85007-9. [DOI] [PubMed] [Google Scholar]
  17. Ling N., Shrimpton C., Sleep J., Kendrick-Jones J., Irving M. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle. Biophys J. 1996 Apr;70(4):1836–1846. doi: 10.1016/S0006-3495(96)79749-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ludescher R. D., Thomas D. D. Microsecond rotational dynamics of phosphorescent-labeled muscle cross-bridges. Biochemistry. 1988 May 3;27(9):3343–3351. doi: 10.1021/bi00409a034. [DOI] [PubMed] [Google Scholar]
  19. Mendelson R. A., Morales M. F., Botts J. Segmental flexibility of the S-1 moiety of myosin. Biochemistry. 1973 Jun 5;12(12):2250–2255. doi: 10.1021/bi00736a011. [DOI] [PubMed] [Google Scholar]
  20. Munro I., Pecht I., Stryer L. Subnanosecond motions of tryptophan residues in proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):56–60. doi: 10.1073/pnas.76.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stein R. A., Ludescher R. D., Dahlberg P. S., Fajer P. G., Bennett R. L., Thomas D. D. Time-resolved rotational dynamics of phosphorescent-labeled myosin heads in contracting muscle fibers. Biochemistry. 1990 Oct 30;29(43):10023–10031. doi: 10.1021/bi00495a003. [DOI] [PubMed] [Google Scholar]
  22. Tregear R. T., Mendelson R. A. Polarization from a helix of fluorophores and its relation to that obtained from muscle. Biophys J. 2009 Jan 1;15(5):455–467. doi: 10.1016/S0006-3495(75)85830-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Gurp M., Van Ginkel G., Levine Y. K. Orientational properties of biological pigments in ordered systems studied with polarized light: photosynthetic pigment-protein complexes in membranes. J Theor Biol. 1988 Apr 7;131(3):333–349. doi: 10.1016/s0022-5193(88)80229-7. [DOI] [PubMed] [Google Scholar]
  24. Vogel H., Jähnig F. Fast and slow orientational fluctuations in membranes. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2029–2033. doi: 10.1073/pnas.82.7.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wahl P., Tawada K., Auchet J. C. Study of tropomyosin labelled with a fluorescent probe by pulse fluorimetry in polarized light. Interaction of that protein with troponin and actin. Eur J Biochem. 1978 Aug 1;88(2):421–424. doi: 10.1111/j.1432-1033.1978.tb12464.x. [DOI] [PubMed] [Google Scholar]
  26. Yguerabide J., Epstein H. F., Stryer L. Segmental flexibility in an antibody molecule. J Mol Biol. 1970 Aug;51(3):573–590. doi: 10.1016/0022-2836(70)90009-4. [DOI] [PubMed] [Google Scholar]
  27. van der Heide U. A., Orbons B., Gerritsen H. C., Levine Y. K. The orientation of transition moments of dye molecules used in fluorescence studies of muscle systems. Eur Biophys J. 1992;21(4):263–272. doi: 10.1007/BF00185121. [DOI] [PubMed] [Google Scholar]
  28. van der Heide U. A., Rem O. E., Gerritsen H. C., de Beer E. L., Schiereck P., Trayer I. P., Levine Y. K. A fluorescence depolarization study of the orientational distribution of crossbridges in muscle fibres. Eur Biophys J. 1994;23(5):369–378. doi: 10.1007/BF00188661. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES