Abstract
In testing various designs of cell-semiconductor hybrids, the choice of a suitable type of electrically excitable cell is crucial. Here normal rat kidney (NRK) fibroblasts are presented as a cell line, easily maintained in culture, that may substitute for heart or nerve cells in many experiments. Like heart muscle cells, NRK fibroblasts form electrically coupled confluent cell layers, in which propagating action potentials are spontaneously generated. These, however, are not associated with mechanical disturbances. Here we compare heart muscle cells and NRK fibroblasts with respect to action potential waveform, morphology, and substrate adhesion profile, using the whole-cell variant of the patch-clamp technique, atomic force microscopy (AFM), and reflection interference contrast microscopy (RICM), respectively. Our results clearly demonstrate that NRK fibroblasts should provide a highly suitable test system for investigating the signal transfer between electrically excitable cells and extracellular detectors, available at a minimum cost and effort for the experimenters.
Full Text
The Full Text of this article is available as a PDF (409.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D., Burghardt T. P., Thompson N. L. Total internal reflection fluorescence. Annu Rev Biophys Bioeng. 1984;13:247–268. doi: 10.1146/annurev.bb.13.060184.001335. [DOI] [PubMed] [Google Scholar]
- Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol. 1981 Apr;89(1):141–145. doi: 10.1083/jcb.89.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bereiter-Hahn J., Fox C. H., Thorell B. Quantitative reflection contrast microscopy of living cells. J Cell Biol. 1979 Sep;82(3):767–779. doi: 10.1083/jcb.82.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergveld P., Wiersma J., Meertens H. Extracellular potential recordings by means of a field effect transitor without gate metal, called OSFET. IEEE Trans Biomed Eng. 1976 Mar;23(2):136–144. doi: 10.1109/tbme.1976.324574. [DOI] [PubMed] [Google Scholar]
- Blondel B., Roijen I., Cheneval J. P. Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia. 1971 Mar 15;27(3):356–358. doi: 10.1007/BF02138197. [DOI] [PubMed] [Google Scholar]
- Connolly P., Clark P., Curtis A. S., Dow J. A., Wilkinson C. D. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron. 1990;5(3):223–234. doi: 10.1016/0956-5663(90)80011-2. [DOI] [PubMed] [Google Scholar]
- De Roos A. D., Van Zoelen E. J., Theuvenet A. P. Membrane depolarization in NRK fibroblasts by bradykinin is mediated by a calcium-dependent chloride conductance. J Cell Physiol. 1997 Feb;170(2):166–173. doi: 10.1002/(SICI)1097-4652(199702)170:2<166::AID-JCP8>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
- Donath E., Gingell D. A sharp cell surface conformational transition at low ionic strength changes the nature of the adhesion of enzyme-treated red blood cells to a hydrocarbon interface. J Cell Sci. 1983 Sep;63:113–124. doi: 10.1242/jcs.63.1.113. [DOI] [PubMed] [Google Scholar]
- Fromherz P., Offenhäusser A., Vetter T., Weis J. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science. 1991 May 31;252(5010):1290–1293. doi: 10.1126/science.1925540. [DOI] [PubMed] [Google Scholar]
- Gingell D., Todd I., Bailey J. Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers. J Cell Biol. 1985 Apr;100(4):1334–1338. doi: 10.1083/jcb.100.4.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gingell D., Todd I. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys J. 1979 Jun;26(3):507–526. doi: 10.1016/S0006-3495(79)85268-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gingell D., Todd I. Red blood cell adhesion. II. Interferometric examination of the interaction with hydrocarbon oil and glass. J Cell Sci. 1980 Feb;41:135–149. doi: 10.1242/jcs.41.1.135. [DOI] [PubMed] [Google Scholar]
- Gross G. W., Harsch A., Rhoades B. K., Göpel W. Odor, drug and toxin analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens Bioelectron. 1997;12(5):373–393. doi: 10.1016/s0956-5663(97)00012-2. [DOI] [PubMed] [Google Scholar]
- Gross G. W., Rhoades B. K., Azzazy H. M., Wu M. C. The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron. 1995 Summer;10(6-7):553–567. doi: 10.1016/0956-5663(95)96931-n. [DOI] [PubMed] [Google Scholar]
- Gross G. W., Wen W. Y., Lin J. W. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. J Neurosci Methods. 1985 Nov-Dec;15(3):243–252. doi: 10.1016/0165-0270(85)90105-0. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
- Hornung J., Müller T., Fuhr G. Cryopreservation of anchorage-dependent mammalian cells fixed to structured glass and silicon substrates. Cryobiology. 1996 Apr;33(2):260–270. doi: 10.1006/cryo.1996.0026. [DOI] [PubMed] [Google Scholar]
- Israel D. A., Barry W. H., Edell D. J., Mark R. G. An array of microelectrodes to stimulate and record from cardiac cells in culture. Am J Physiol. 1984 Oct;247(4 Pt 2):H669–H674. doi: 10.1152/ajpheart.1984.247.4.H669. [DOI] [PubMed] [Google Scholar]
- Israel D. A., Edell D. J., Mark R. G. Time delays in propagation of cardiac action potential. Am J Physiol. 1990 Jun;258(6 Pt 2):H1906–H1917. doi: 10.1152/ajpheart.1990.258.6.H1906. [DOI] [PubMed] [Google Scholar]
- Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
- Izzard C. S., Lochner L. R. Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J Cell Sci. 1980 Apr;42:81–116. doi: 10.1242/jcs.42.1.81. [DOI] [PubMed] [Google Scholar]
- Jacobson S. L., Piper H. M. Cell cultures of adult cardiomyocytes as models of the myocardium. J Mol Cell Cardiol. 1986 Jul;18(7):661–678. doi: 10.1016/s0022-2828(86)80939-7. [DOI] [PubMed] [Google Scholar]
- Jimbo Y., Robinson H. P., Kawana A. Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture. IEEE Trans Biomed Eng. 1993 Aug;40(8):804–810. doi: 10.1109/10.238465. [DOI] [PubMed] [Google Scholar]
- Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kodama I., Boyett M. R. Regional differences in the electrical activity of the rabbit sinus node. Pflugers Arch. 1985 Jul;404(3):214–226. doi: 10.1007/BF00581242. [DOI] [PubMed] [Google Scholar]
- Nathan R. D. Two electrophysiologically distinct types of cultured pacemaker cells from rabbit sinoatrial node. Am J Physiol. 1986 Feb;250(2 Pt 2):H325–H329. doi: 10.1152/ajpheart.1986.250.2.H325. [DOI] [PubMed] [Google Scholar]
- Novak J. L., Wheeler B. C. Recording from the Aplysia abdominal ganglion with a planar microelectrode array. IEEE Trans Biomed Eng. 1986 Feb;33(2):196–202. doi: 10.1109/TBME.1986.325891. [DOI] [PubMed] [Google Scholar]
- Offenhäusser A., Sprössler C., Matsuzawa M., Knoll W. Field-effect transistor array for monitoring electrical activity from mammalian neurons in culture. Biosens Bioelectron. 1997;12(8):819–826. doi: 10.1016/s0956-5663(97)00047-x. [DOI] [PubMed] [Google Scholar]
- Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
- Regehr W. G., Pine J., Cohan C. S., Mischke M. D., Tank D. W. Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J Neurosci Methods. 1989 Nov;30(2):91–106. doi: 10.1016/0165-0270(89)90055-1. [DOI] [PubMed] [Google Scholar]
- Riehle M., Bereiter-Hahn J. Ouabain and digitoxin as modulators of chick embryo cardiomyocyte energy metabolism. Arzneimittelforschung. 1994 Aug;44(8):943–947. [PubMed] [Google Scholar]
- Risso S., DeFelice L. J. Ca channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys J. 1993 Sep;65(3):1006–1018. doi: 10.1016/S0006-3495(93)81147-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaffer P., Ahammer H., Müller W., Koidl B., Windisch H. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Pflugers Arch. 1994 Apr;426(6):548–551. doi: 10.1007/BF00378533. [DOI] [PubMed] [Google Scholar]
- Schindl M., Wallraff E., Deubzer B., Witke W., Gerisch G., Sackmann E. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys J. 1995 Mar;68(3):1177–1190. doi: 10.1016/S0006-3495(95)80294-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simson R., Wallraff E., Faix J., Niewöhner J., Gerisch G., Sackmann E. Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or cortexillins. Biophys J. 1998 Jan;74(1):514–522. doi: 10.1016/S0006-3495(98)77808-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas C. A., Jr, Springer P. A., Loeb G. E., Berwald-Netter Y., Okun L. M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972 Sep;74(1):61–66. doi: 10.1016/0014-4827(72)90481-8. [DOI] [PubMed] [Google Scholar]
- Verschueren H. Interference reflection microscopy in cell biology: methodology and applications. J Cell Sci. 1985 Apr;75:279–301. doi: 10.1242/jcs.75.1.279. [DOI] [PubMed] [Google Scholar]
- Wilson R. J., Breckenridge L., Blackshaw S. E., Connolly P., Dow J. A., Curtis A. S., Wilkinson C. D. Simultaneous multisite recordings and stimulation of single isolated leech neurons using planar extracellular electrode arrays. J Neurosci Methods. 1994 Jul;53(1):101–110. doi: 10.1016/0165-0270(94)90150-3. [DOI] [PubMed] [Google Scholar]
- Wolf H., Gingell D. Conformational response of the glycocalyx to ionic strength and interaction with modified glass surfaces: study of live red cells by interferometry. J Cell Sci. 1983 Sep;63:101–112. doi: 10.1242/jcs.63.1.101. [DOI] [PubMed] [Google Scholar]
- de Roos A. D., Willems P. H., Peters P. H., van Zoelen E. J., Theuvenet A. P. Synchronized calcium spiking resulting from spontaneous calcium action potentials in monolayers of NRK fibroblasts. Cell Calcium. 1997 Sep;22(3):195–207. doi: 10.1016/s0143-4160(97)90013-0. [DOI] [PubMed] [Google Scholar]
