Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1668–1678. doi: 10.1016/S0006-3495(99)77326-1

Two light-activated conductances in the eye of the green alga Volvox carteri.

F J Braun 1, P Hegemann 1
PMCID: PMC1300143  PMID: 10049347

Abstract

Photoreceptor currents of the multicellular green alga Volvox carteri were analyzed using a dissolver mutant. The photocurrents are restricted to the eyespot region of somatic cells. Photocurrents are detectable from intact cells and excised eyes. The rhodopsin action spectrum suggests that the currents are induced by Volvox rhodopsin. Flash-induced photocurrents are a composition of a fast Ca2+-carried current (PF) and a slower current (PS), which is carried by H+. PF is a high-intensity response that appears with a delay of less than 50 micros after flash. The stimulus-response curve of its initial rise is fit by a single exponential and parallels the rhodopsin bleaching. These two observations suggest that the responsible channel is closely connected to the rhodopsin, both forming a tight complex. At low flash energies PS is dominating. The current delay increases up to 10 ms, and the PS amplitude saturates when only a few percent of the rhodopsin is bleached. The data are in favor of a second signaling system, which includes a signal transducer mediating between rhodopsin and the channel. We present a model of how different modes of signal transduction are accomplished in this alga under different light conditions.

Full Text

The Full Text of this article is available as a PDF (207.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader C. R., Macleish P. R., Schwartz E. A. A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol. 1979 Nov;296:1–26. doi: 10.1113/jphysiol.1979.sp012988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck C., Uhl R. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii. J Cell Biol. 1994 Jun;125(5):1119–1125. doi: 10.1083/jcb.125.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deininger W., Kröger P., Hegemann U., Lottspeich F., Hegemann P. Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J. 1995 Dec 1;14(23):5849–5858. doi: 10.1002/j.1460-2075.1995.tb00273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Felber S., Breuer H. P., Petruccione F., Honerkamp J., Hofmann K. P. Stochastic simulation of the transducin GTPase cycle. Biophys J. 1996 Dec;71(6):3051–3063. doi: 10.1016/S0006-3495(96)79499-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster K. W., Smyth R. D. Light Antennas in phototactic algae. Microbiol Rev. 1980 Dec;44(4):572–630. doi: 10.1128/mr.44.4.572-630.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Govorunova E. G., Sineshchekov O. A., Hegemann P. Desensitization and Dark Recovery of the Photoreceptor Current in Chlamydomonas reinhardtii. Plant Physiol. 1997 Oct;115(2):633–642. doi: 10.1104/pp.115.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holland E. M., Braun F. J., Nonnengässer C., Harz H., Hegemann P. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. Biophys J. 1996 Feb;70(2):924–931. doi: 10.1016/S0006-3495(96)79635-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holland E. M., Harz H., Uhl R., Hegemann P. Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas. Biophys J. 1997 Sep;73(3):1395–1401. doi: 10.1016/S0006-3495(97)78171-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirk D. L., Birchem R., King N. The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci. 1986 Feb;80:207–231. doi: 10.1242/jcs.80.1.207. [DOI] [PubMed] [Google Scholar]
  10. Kirk D. L., Harper J. F. Genetic, biochemical, and molecular approaches to Volvox development and evolution. Int Rev Cytol. 1986;99:217–293. doi: 10.1016/s0074-7696(08)61428-x. [DOI] [PubMed] [Google Scholar]
  11. Kirk D. L., Kaufman M. R., Keeling R. M., Stamer K. A. Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo. Dev Suppl. 1991;1:67–82. [PubMed] [Google Scholar]
  12. Kröger P., Hegemann P. Photophobic responses and phototaxis in Chlamydomonas are triggered by a single rhodopsin photoreceptor. FEBS Lett. 1994 Mar 14;341(1):5–9. doi: 10.1016/0014-5793(94)80229-7. [DOI] [PubMed] [Google Scholar]
  13. Lamb T. D., McNaughton P. A., Yau K. W. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol. 1981;319:463–496. doi: 10.1113/jphysiol.1981.sp013921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Litvin F. F., Sineshchekov O. A., Sineshchekov V. A. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978 Feb 2;271(5644):476–478. doi: 10.1038/271476a0. [DOI] [PubMed] [Google Scholar]
  15. Malhotra B., Glass ADM. Potassium Fluxes in Chlamydomonas reinhardtii (I.Kinetics and Electrical Potentials). Plant Physiol. 1995 Aug;108(4):1527–1536. doi: 10.1104/pp.108.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Niemeyer B. A., Suzuki E., Scott K., Jalink K., Zuker C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell. 1996 May 31;85(5):651–659. doi: 10.1016/s0092-8674(00)81232-5. [DOI] [PubMed] [Google Scholar]
  17. Nonnengässer C., Holland E. M., Harz H., Hegemann P. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions. Biophys J. 1996 Feb;70(2):932–938. doi: 10.1016/S0006-3495(96)79636-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sineshchekov O. A., Litvin F. F., Keszthelyi L. Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis. Biophys J. 1990 Jan;57(1):33–39. doi: 10.1016/S0006-3495(90)82504-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tam L. W., Kirk D. L. The program for cellular differentiation in Volvox carteri as revealed by molecular analysis of development in a gonidialess/somatic regenerator mutant. Development. 1991 Jun;112(2):571–580. doi: 10.1242/dev.112.2.571. [DOI] [PubMed] [Google Scholar]
  20. Tamm S. Ca2+ channels and signalling in cilia and flagella. Trends Cell Biol. 1994 Sep;4(9):305–310. doi: 10.1016/0962-8924(94)90226-7. [DOI] [PubMed] [Google Scholar]
  21. Witman G. B. Chlamydomonas phototaxis. Trends Cell Biol. 1993 Nov;3(11):403–408. doi: 10.1016/0962-8924(93)90091-e. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES