Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Mar;76(3):1706–1719. doi: 10.1016/S0006-3495(99)77329-7

Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate.

R Jasuja 1, J Keyoung 1, G P Reid 1, D R Trentham 1, S Khan 1
PMCID: PMC1300146  PMID: 10049350

Abstract

Computer-assisted motion analysis coupled to flash photolysis of caged chemoeffectors provides a means for time-resolved analysis of bacterial chemotaxis. Escherichia coli taxis toward the amino acid attractant L-aspartate is mediated by the Tar receptor. The physiology of this response, as well as Tar structure and biochemistry, has been studied extensively. The beta-2, 6-dinitrobenzyl ester of L-aspartic acid and the 1-(2-nitrophenyl)ethyl ether of 8-hydroxypyrene-1,3,6-tris-sulfonic acid were synthesized. These compounds liberated L-aspartate and the fluorophore 8-hydroxypyrene 1,3,6-tris-sulfonic acid (pyranine) upon irradiation with near-UV light. Photorelease of the fluorophore was used to define the amplitude and temporal stability of the aspartate jumps employed in chemotaxis experiments. The dependence of chemotactic adaptation times on aspartate concentration, determined in mixing experiments, was best fit by two Tar aspartate-binding sites. Signal processing (excitation) times, amplitudes, and adaptive recovery of responses elicited by aspartate jumps producing less than 20% change in receptor occupancy were characterized in photorelease assays. Aspartate concentration jumps in the nanomolar range elicited measurable responses. The response threshold and sensitivity of swimming bacteria matched those of bacteria tethered to glass by a single flagellum. Stimuli of similar magnitude, delivered either by rapid mixing or photorelease, evoked responses of similar strength, as assessed by recovery time measurements. These times remained proportional to change in receptor occupancy close to threshold, irrespective of prior occupancy. Motor excitation responses decayed exponentially with time. Rates of excitation responses near threshold ranged from 2 to 7 s-1. These values are consistent with control of excitation signaling by decay of phosphorylated pools of the response regulator protein, CheY. Excitation response rates increased slightly with stimulus size up to values limited by the instrumentation; the most rapid was measured to be 16 +/- 3 (SE) s-1. This increase may reflect simultaneous activation of CheY dephosphorylation, together with inhibition of its phosphorylation.

Full Text

The Full Text of this article is available as a PDF (237.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleby J. L., Parkinson J. S., Bourret R. B. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996 Sep 20;86(6):845–848. doi: 10.1016/s0092-8674(00)80158-0. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C., Block S. M. A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol. 1984 Nov;130(11):2915–2920. doi: 10.1099/00221287-130-11-2915. [DOI] [PubMed] [Google Scholar]
  3. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
  4. Berg H. C., Tedesco P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3235–3239. doi: 10.1073/pnas.72.8.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biemann H. P., Koshland D. E., Jr Aspartate receptors of Escherichia coli and Salmonella typhimurium bind ligand with negative and half-of-the-sites cooperativity. Biochemistry. 1994 Jan 25;33(3):629–634. doi: 10.1021/bi00169a002. [DOI] [PubMed] [Google Scholar]
  6. Blair D. F. How bacteria sense and swim. Annu Rev Microbiol. 1995;49:489–522. doi: 10.1146/annurev.mi.49.100195.002421. [DOI] [PubMed] [Google Scholar]
  7. Blat Y., Eisenbach M. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry. 1994 Feb 1;33(4):902–906. doi: 10.1021/bi00170a008. [DOI] [PubMed] [Google Scholar]
  8. Block S. M., Segall J. E., Berg H. C. Adaptation kinetics in bacterial chemotaxis. J Bacteriol. 1983 Apr;154(1):312–323. doi: 10.1128/jb.154.1.312-323.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bray D., Bourret R. B. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol Biol Cell. 1995 Oct;6(10):1367–1380. doi: 10.1091/mbc.6.10.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bray D. Signaling complexes: biophysical constraints on intracellular communication. Annu Rev Biophys Biomol Struct. 1998;27:59–75. doi: 10.1146/annurev.biophys.27.1.59. [DOI] [PubMed] [Google Scholar]
  11. Brown D. A., Berg H. C. Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1388–1392. doi: 10.1073/pnas.71.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clarke S., Koshland D. E., Jr Membrane receptors for aspartate and serine in bacterial chemotaxis. J Biol Chem. 1979 Oct 10;254(19):9695–9702. [PubMed] [Google Scholar]
  13. Cochran A. G., Kim P. S. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain. Science. 1996 Feb 23;271(5252):1113–1116. doi: 10.1126/science.271.5252.1113. [DOI] [PubMed] [Google Scholar]
  14. Danielson M. A., Biemann H. P., Koshland D. E., Jr, Falke J. J. Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study. Biochemistry. 1994 May 24;33(20):6100–6109. doi: 10.1021/bi00186a009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Delcour A. H. Function and modulation of bacterial porins: insights from electrophysiology. FEMS Microbiol Lett. 1997 Jun 15;151(2):115–123. doi: 10.1111/j.1574-6968.1997.tb12558.x. [DOI] [PubMed] [Google Scholar]
  16. Dunten P., Koshland D. E., Jr Tuning the responsiveness of a sensory receptor via covalent modification. J Biol Chem. 1991 Jan 25;266(3):1491–1496. [PubMed] [Google Scholar]
  17. Eisenbach M. Control of bacterial chemotaxis. Mol Microbiol. 1996 Jun;20(5):903–910. doi: 10.1111/j.1365-2958.1996.tb02531.x. [DOI] [PubMed] [Google Scholar]
  18. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol. 1997;13:457–512. doi: 10.1146/annurev.cellbio.13.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Falke J. J., Koshland D. E., Jr Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science. 1987 Sep 25;237(4822):1596–1600. doi: 10.1126/science.2820061. [DOI] [PubMed] [Google Scholar]
  20. Gardina P. J., Manson M. D. Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain. Science. 1996 Oct 18;274(5286):425–426. doi: 10.1126/science.274.5286.425. [DOI] [PubMed] [Google Scholar]
  21. Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992 Sep 18;70(6):975–982. doi: 10.1016/0092-8674(92)90247-a. [DOI] [PubMed] [Google Scholar]
  22. Hess J. F., Oosawa K., Kaplan N., Simon M. I. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell. 1988 Apr 8;53(1):79–87. doi: 10.1016/0092-8674(88)90489-8. [DOI] [PubMed] [Google Scholar]
  23. Huang C., Stewart R. C. CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis. Biochim Biophys Acta. 1993 Oct 6;1202(2):297–304. doi: 10.1016/0167-4838(93)90019-n. [DOI] [PubMed] [Google Scholar]
  24. Kay W. W. Two aspartate transport systems in Escherichia coli. J Biol Chem. 1971 Dec 10;246(23):7373–7382. [PubMed] [Google Scholar]
  25. Kehry M. R., Doak T. G., Dahlquist F. W. Sensory adaptation in bacterial chemotaxis: regulation of demethylation. J Bacteriol. 1985 Sep;163(3):983–990. doi: 10.1128/jb.163.3.983-990.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khan S., Amoyaw K., Spudich J. L., Reid G. P., Trentham D. R. Bacterial chemoreceptor signaling probed by flash photorelease of a caged serine. Biophys J. 1992 Apr;62(1):67–68. doi: 10.1016/S0006-3495(92)81781-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Khan S., Castellano F., Spudich J. L., McCray J. A., Goody R. S., Reid G. P., Trentham D. R. Excitatory signaling in bacterial probed by caged chemoeffectors. Biophys J. 1993 Dec;65(6):2368–2382. doi: 10.1016/S0006-3495(93)81317-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Khan S., Spudich J. L., McCray J. A., Trentham D. R. Chemotactic signal integration in bacteria. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9757–9761. doi: 10.1073/pnas.92.21.9757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kuo S. C., Koshland D. E., Jr Multiple kinetic states for the flagellar motor switch. J Bacteriol. 1989 Nov;171(11):6279–6287. doi: 10.1128/jb.171.11.6279-6287.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lin L. N., Li J., Brandts J. F., Weis R. M. The serine receptor of bacterial chemotaxis exhibits half-site saturation for serine binding. Biochemistry. 1994 May 31;33(21):6564–6570. doi: 10.1021/bi00187a025. [DOI] [PubMed] [Google Scholar]
  31. Lukat G. S., Lee B. H., Mottonen J. M., Stock A. M., Stock J. B. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem. 1991 May 5;266(13):8348–8354. [PubMed] [Google Scholar]
  32. Macnab R. M., Koshland D. E., Jr The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mesibov R., Ordal G. W., Adler J. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena. J Gen Physiol. 1973 Aug;62(2):203–223. doi: 10.1085/jgp.62.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Milburn M. V., Privé G. G., Milligan D. L., Scott W. G., Yeh J., Jancarik J., Koshland D. E., Jr, Kim S. H. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science. 1991 Nov 29;254(5036):1342–1347. doi: 10.1126/science.1660187. [DOI] [PubMed] [Google Scholar]
  35. Nerbonne J. M. Design and application of photolabile intracellular probes. Soc Gen Physiol Ser. 1986;40:417–445. [PubMed] [Google Scholar]
  36. Sager B. M., Sekelsky J. J., Matsumura P., Adler J. Use of a computer to assay motility in bacteria. Anal Biochem. 1988 Sep;173(2):271–277. doi: 10.1016/0003-2697(88)90189-3. [DOI] [PubMed] [Google Scholar]
  37. Schellenberg G. D., Furlong C. E. Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J Biol Chem. 1977 Dec 25;252(24):9055–9064. [PubMed] [Google Scholar]
  38. Segall J. E., Block S. M., Berg H. C. Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8987–8991. doi: 10.1073/pnas.83.23.8987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Segall J. E., Manson M. D., Berg H. C. Signal processing times in bacterial chemotaxis. Nature. 1982 Apr 29;296(5860):855–857. doi: 10.1038/296855a0. [DOI] [PubMed] [Google Scholar]
  40. Shapiro M. J., Koshland D. E., Jr Mutagenic studies of the interaction between the aspartate receptor and methyltransferase from Escherichia coli. J Biol Chem. 1994 Apr 15;269(15):11054–11059. [PubMed] [Google Scholar]
  41. Springer M. S., Goy M. F., Adler J. Protein methylation in behavioural control mechanisms and in signal transduction. Nature. 1979 Jul 26;280(5720):279–284. doi: 10.1038/280279a0. [DOI] [PubMed] [Google Scholar]
  42. Spudich J. L., Koshland D. E., Jr Non-genetic individuality: chance in the single cell. Nature. 1976 Aug 5;262(5568):467–471. doi: 10.1038/262467a0. [DOI] [PubMed] [Google Scholar]
  43. Spudich J. L., Koshland D. E., Jr Quantitation of the sensory response in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1975 Feb;72(2):710–713. doi: 10.1073/pnas.72.2.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walker J. W., Reid G. P., Trentham D. R. Synthesis and properties of caged nucleotides. Methods Enzymol. 1989;172:288–301. doi: 10.1016/s0076-6879(89)72019-x. [DOI] [PubMed] [Google Scholar]
  45. Wang H., Matsumura P. Characterization of the CheAS/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY-phosphate. Mol Microbiol. 1996 Feb;19(4):695–703. doi: 10.1046/j.1365-2958.1996.393934.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES