Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):1796–1811. doi: 10.1016/S0006-3495(99)77340-6

Molecular dynamics of human methemoglobin: the transmission of conformational information between subunits in an alpha beta dimer.

N Ramadas 1, J M Rifkind 1
PMCID: PMC1300157  PMID: 10096879

Abstract

Spectroscopic studies indicate an interaction of the distal histidine with the heme iron as well as the transmission of distal heme perturbations across the alpha1beta1 interface. Molecular dynamics simulations have been used to explain the molecular basis for these processes. Using a human methemoglobin alpha beta dimer, it has been shown that at 235 K after 61 ps, a rearrangement occurs in the alpha-chain corresponding to the formation of a bond with the distal histidine. This transition does not take place in the beta-chain during a 100-ps simulation and is reversed at 300 K. The absence of the distal histidine transition in the isolated chains and with the interface frozen indicate the involvement of the alphabeta interface. A detailed analysis of the simulation has been performed in terms of RMS fluctuations, domain cross-correlation maps, the disruption of helix hydrogen bonds, as well changes in electrostatic interactions and dihedral angles. This analysis shows that the rearrangements in the alpha-chain necessary to bring the histidine closer to the iron involve alterations primarily in the CD loop and at the interface. Communication to the beta-chain distal pocket is propagated by increased interactions of the alpha-chain B helix with the beta-chain G-GH-H segment and the flexibility in the EF loop. The G helices shown to be involved in propagation of perturbation across the alpha1beta1 interface extend into the alpha1beta2 interfaces, providing a mechansim whereby distal interactions can modulate the T<==>R transition in hemoglobin.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K., Doyle M. L., Myers D., Daugherty M. A. Molecular code for cooperativity in hemoglobin. Science. 1992 Jan 3;255(5040):54–63. doi: 10.1126/science.1553532. [DOI] [PubMed] [Google Scholar]
  2. Anderson L. Intermediate structure of normal human haemoglobin: methaemoglobin in the deoxy quaternary conformation. J Mol Biol. 1973 Sep 25;79(3):495–506. doi: 10.1016/0022-2836(73)90401-4. [DOI] [PubMed] [Google Scholar]
  3. Anderson L. Structures of deoxy and carbonmonoxy haemoglobin Kansas in the deoxy quaternary conformation. J Mol Biol. 1975 May 5;94(1):33–49. doi: 10.1016/0022-2836(75)90403-9. [DOI] [PubMed] [Google Scholar]
  4. Arata Y. Effect of the tertiary structure alteration by ligation on the interface contacts between subunits of hemoglobin. Biochim Biophys Acta. 1995 Feb 22;1247(1):24–34. doi: 10.1016/0167-4838(94)00196-n. [DOI] [PubMed] [Google Scholar]
  5. Arata Y., Seno Y., Otsuka J. A study on the quaternary structure change of hemoglobin in the ligation process. Biochim Biophys Acta. 1988 Oct 12;956(3):243–255. doi: 10.1016/0167-4838(88)90141-0. [DOI] [PubMed] [Google Scholar]
  6. Atha D. H., Riggs A. Tetramer-dimer dissociation in homoglobin and the Bohr effect. J Biol Chem. 1976 Sep 25;251(18):5537–5543. [PubMed] [Google Scholar]
  7. Balagopalakrishna C., Manoharan P. T., Abugo O. O., Rifkind J. M. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry. 1996 May 21;35(20):6393–6398. doi: 10.1021/bi952875+. [DOI] [PubMed] [Google Scholar]
  8. Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
  9. Barksdale A. D., Rosenberg A. Thermodynamic characterization of subunit association in liganded ferrohemoglobin. The temperature pH, and anion dependence of the carboxyhemoglobin A dimer-tetramer equilibrium. J Biol Chem. 1978 Jul 25;253(14):4881–4885. [PubMed] [Google Scholar]
  10. Björling S. C., Goldbeck R. A., Paquette S. J., Milder S. J., Kliger D. S. Allosteric intermediates in hemoglobin. 1. Nanosecond time-resolved circular dichroism spectroscopy. Biochemistry. 1996 Jul 2;35(26):8619–8627. doi: 10.1021/bi952247s. [DOI] [PubMed] [Google Scholar]
  11. Bucci E., Fronticelli C., Gryczynski Z., Razynska A., Collins J. H. Effect of intramolecular cross-links on the enthalpy and quaternary structure of the intermediates of oxygenation of human hemoglobin. Biochemistry. 1993 Apr 13;32(14):3519–3526. doi: 10.1021/bi00065a001. [DOI] [PubMed] [Google Scholar]
  12. Carlson M. L., Regan R. M., Gibson Q. H. Distal cavity fluctuations in myoglobin: protein motion and ligand diffusion. Biochemistry. 1996 Jan 30;35(4):1125–1136. doi: 10.1021/bi951767k. [DOI] [PubMed] [Google Scholar]
  13. Doyle M. L., Ackers G. K. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin. Biochemistry. 1992 Nov 17;31(45):11182–11195. doi: 10.1021/bi00160a032. [DOI] [PubMed] [Google Scholar]
  14. Fermi G. Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. J Mol Biol. 1975 Sep 15;97(2):237–256. doi: 10.1016/s0022-2836(75)80037-4. [DOI] [PubMed] [Google Scholar]
  15. Gelin B. R., Lee A. W., Karplus M. Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. J Mol Biol. 1983 Dec 25;171(4):489–559. doi: 10.1016/0022-2836(83)90042-6. [DOI] [PubMed] [Google Scholar]
  16. Harvey S. C. Treatment of electrostatic effects in macromolecular modeling. Proteins. 1989;5(1):78–92. doi: 10.1002/prot.340050109. [DOI] [PubMed] [Google Scholar]
  17. Ho C. Proton nuclear magnetic resonance studies on hemoglobin: cooperative interactions and partially ligated intermediates. Adv Protein Chem. 1992;43:153–312. doi: 10.1016/s0065-3233(08)60555-0. [DOI] [PubMed] [Google Scholar]
  18. Holt J. M., Ackers G. K. The pathway of allosteric control as revealed by hemoglobin intermediate states. FASEB J. 1995 Feb;9(2):210–218. doi: 10.1096/fasebj.9.2.7781923. [DOI] [PubMed] [Google Scholar]
  19. Huang Y., Ackers G. K. Enthalpic and entropic components of cooperativity for the partially ligated intermediates of hemoglobin support a "symmetry rule" mechanism. Biochemistry. 1995 May 16;34(19):6316–6327. doi: 10.1021/bi00019a009. [DOI] [PubMed] [Google Scholar]
  20. Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
  21. Kellett G. L., Schachman H. K. Dissociation of hemoglobin into subunits. Monomer formation and the influence of ligands. J Mol Biol. 1971 Aug 14;59(3):387–399. doi: 10.1016/0022-2836(71)90306-8. [DOI] [PubMed] [Google Scholar]
  22. Komeiji Y., Uebayasi M., Yamato I. Molecular dynamics simulations of trp apo- and holorepressors: domain structure and ligand-protein interaction. Proteins. 1994 Nov;20(3):248–258. doi: 10.1002/prot.340200305. [DOI] [PubMed] [Google Scholar]
  23. Kwiatkowski L. D., De Young A., Noble R. W. Isolation and stability of partially oxidized intermediates of carp hemoglobin: kinetics of CO binding to the mono- and triferric species. Biochemistry. 1994 May 17;33(19):5884–5893. doi: 10.1021/bi00185a028. [DOI] [PubMed] [Google Scholar]
  24. Ladner R. C., Heidner E. J., Perutz M. F. The structure of horse methaemoglobin at 2-0 A resolution. J Mol Biol. 1977 Aug 15;114(3):385–414. doi: 10.1016/0022-2836(77)90256-x. [DOI] [PubMed] [Google Scholar]
  25. Levy A., Kuppusamy P., Rifkind J. M. Multiple heme pocket subconformations of methemoglobin associated with distal histidine interactions. Biochemistry. 1990 Oct 9;29(40):9311–9316. doi: 10.1021/bi00492a002. [DOI] [PubMed] [Google Scholar]
  26. Levy A., Rifkind J. M. Low-temperature formation of a distal histidine complex in hemoglobin: a probe for heme pocket flexibility. Biochemistry. 1985 Oct 22;24(22):6050–6054. doi: 10.1021/bi00343a005. [DOI] [PubMed] [Google Scholar]
  27. Levy A., Sharma V. S., Zhang L., Rifkind J. M. A new mode for heme-heme interactions in hemoglobin associated with distal perturbations. Biophys J. 1992 Mar;61(3):750–755. doi: 10.1016/S0006-3495(92)81879-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Loncharich R. J., Brooks B. R. The effects of truncating long-range forces on protein dynamics. Proteins. 1989;6(1):32–45. doi: 10.1002/prot.340060104. [DOI] [PubMed] [Google Scholar]
  29. Matthew J. B. Electrostatic effects in proteins. Annu Rev Biophys Biophys Chem. 1985;14:387–417. doi: 10.1146/annurev.bb.14.060185.002131. [DOI] [PubMed] [Google Scholar]
  30. Mehler E. L., Solmajer T. Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng. 1991 Dec;4(8):903–910. doi: 10.1093/protein/4.8.903. [DOI] [PubMed] [Google Scholar]
  31. Moffat K., Deatherage J. F., Seybert D. W. A structural model for the kinetic behavior of hemoglobin. Science. 1979 Nov 30;206(4422):1035–1042. doi: 10.1126/science.493990. [DOI] [PubMed] [Google Scholar]
  32. Nichols W. L., Rose G. D., Ten Eyck L. F., Zimm B. H. Rigid domains in proteins: an algorithmic approach to their identification. Proteins. 1995 Sep;23(1):38–48. doi: 10.1002/prot.340230106. [DOI] [PubMed] [Google Scholar]
  33. Nichols W. L., Zimm B. H., Ten Eyck L. F. Conformation-invariant structures of the alpha1beta1 human hemoglobin dimer. J Mol Biol. 1997 Jul 25;270(4):598–615. doi: 10.1006/jmbi.1997.1087. [DOI] [PubMed] [Google Scholar]
  34. Perrella M., Davids N., Rossi-Bernardi L. The association reaction between hemoglobin and carbon monoxide as studied by the isolation of the intermediates. Implications on the mechanism of cooperativity. J Biol Chem. 1992 May 5;267(13):8744–8751. [PubMed] [Google Scholar]
  35. Perutz M. F. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem Sci. 1989 Feb;14(2):42–44. doi: 10.1016/0968-0004(89)90039-x. [DOI] [PubMed] [Google Scholar]
  36. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  37. Rifkind J. M. Hemoglobin. Adv Inorg Biochem. 1988;7:155–244. [PubMed] [Google Scholar]
  38. Rosemeyer M. A., Huehns E. R. On the mechanism of the dissociation of haemoglobin. J Mol Biol. 1967 Apr 28;25(2):253–273. doi: 10.1016/0022-2836(67)90141-6. [DOI] [PubMed] [Google Scholar]
  39. Rousseau D. L., Song S., Friedman J. M., Boffi A., Chiancone E. Heme-heme interactions in a homodimeric cooperative hemoglobin. Evidence from transient Raman scattering. J Biol Chem. 1993 Mar 15;268(8):5719–5723. [PubMed] [Google Scholar]
  40. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  41. Solmajer T., Mehler E. L. Electrostatic screening in molecular dynamics simulations. Protein Eng. 1991 Dec;4(8):911–917. doi: 10.1093/protein/4.8.911. [DOI] [PubMed] [Google Scholar]
  42. TenEyck L. F., Arnone A. Three-dimensional Fourier synthesis of human deoxyhemoglobin at 2-5 A resolution I. X-ray analysis. J Mol Biol. 1976 Jan 5;100(1):3–11. doi: 10.1016/s0022-2836(76)80029-0. [DOI] [PubMed] [Google Scholar]
  43. Tian W. D., Sage J. T., Champion P. M. Investigations of ligand association and dissociation rates in the "open" and "closed" states of myoglobin. J Mol Biol. 1993 Sep 5;233(1):155–166. doi: 10.1006/jmbi.1993.1491. [DOI] [PubMed] [Google Scholar]
  44. Tsuruga M., Matsuoka A., Hachimori A., Sugawara Y., Shikama K. The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. J Biol Chem. 1998 Apr 10;273(15):8607–8615. doi: 10.1074/jbc.273.15.8607. [DOI] [PubMed] [Google Scholar]
  45. Tsuruga M., Shikama K. Biphasic nature in the autoxidation reaction of human oxyhemoglobin. Biochim Biophys Acta. 1997 Jan 4;1337(1):96–104. doi: 10.1016/s0167-4838(96)00156-2. [DOI] [PubMed] [Google Scholar]
  46. van Gunsteren W. F., Berendsen H. J. Computer simulation as a tool for tracing the conformational differences between proteins in solution and in the crystalline state. J Mol Biol. 1984 Jul 15;176(4):559–564. doi: 10.1016/0022-2836(84)90177-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES