Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):1897–1908. doi: 10.1016/S0006-3495(99)77348-0

Noncontact dipole effects on channel permeation. II. Trp conformations and dipole potentials in gramicidin A.

A E Dorigo 1, D G Anderson 1, D D Busath 1
PMCID: PMC1300165  PMID: 10096887

Abstract

The four Trp dipoles in the gramicidin A (gA) channel modulate channel conductance, and their side chain conformations should therefore be important, but the energies of different conformations are unknown. A conformational search for the right-handed helix based on molecular mechanics in vacuo yielded 46 conformations within 20 kcal/mol of the lowest energy conformation. The two lowest energy conformations correspond to the solid-state and solution-state NMR conformations, suggesting that interactions within the peptide determine the conformation. For representative conformations, the electrostatic potential of the Trp side chains on the channel axis was computed. A novel application of the image-series method of. Biophys. J. 9:1160-1170) was introduced to simulate the polarization of bulk water by the Trp side chains. For the experimentally observed structures, the CHARm toph19 potential energy (PE) of a cation in the channel center is -1.65 kcal/mol without images. With images, the PE is -1.9 kcal/mol, demonstrating that the images further enhance the direct dipole effect. Nonstandard conformations yielded less favorable PEs by 0.4-1.1 kcal/mol.

Full Text

The Full Text of this article is available as a PDF (119.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Koeppe R. E., 2nd Molecular determinants of channel function. Physiol Rev. 1992 Oct;72(4 Suppl):S89–158. doi: 10.1152/physrev.1992.72.suppl_4.S89. [DOI] [PubMed] [Google Scholar]
  2. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  3. Axelsen P. H., Haydock C., Prendergast F. G. Molecular dynamics of tryptophan in ribonuclease-T1. I. Simulation strategies and fluorescence anisotropy decay. Biophys J. 1988 Aug;54(2):249–258. doi: 10.1016/S0006-3495(88)82954-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Axelsen P. H., Prendergast F. G. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence. Biophys J. 1989 Jul;56(1):43–66. doi: 10.1016/S0006-3495(89)82651-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
  6. Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
  7. Busath D. D. The use of physical methods in determining gramicidin channel structure and function. Annu Rev Physiol. 1993;55:473–501. doi: 10.1146/annurev.ph.55.030193.002353. [DOI] [PubMed] [Google Scholar]
  8. Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Demchenko A. P. Red-edge-excitation fluorescence spectroscopy of single-tryptophan proteins. Eur Biophys J. 1988;16(2):121–129. doi: 10.1007/BF00255522. [DOI] [PubMed] [Google Scholar]
  10. Dilger J. P. The thickness of monoolein lipid bilayers as determined from reflectance measurements. Biochim Biophys Acta. 1981 Jul 20;645(2):357–363. doi: 10.1016/0005-2736(81)90208-x. [DOI] [PubMed] [Google Scholar]
  11. Etchebest C., Pullman A. The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel. J Biomol Struct Dyn. 1985 Feb;2(5):859–870. doi: 10.1080/07391102.1985.10507605. [DOI] [PubMed] [Google Scholar]
  12. Hao Y., Pear M. R., Busath D. D. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels. Biophys J. 1997 Oct;73(4):1699–1716. doi: 10.1016/S0006-3495(97)78202-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heitz F., Gavach C., Spach G., Trudelle Y. Analysis of the ion transfer through the channel of 9,11,13,15-phenylalanylgramicidin A. Biophys Chem. 1986 Jul;24(2):143–148. doi: 10.1016/0301-4622(86)80007-2. [DOI] [PubMed] [Google Scholar]
  14. Heitz F., Spach G., Trudelle Y. Single channels of 9, 11, 13, 15-destryptophyl-phenylalanyl-gramicidin A. Biophys J. 1982 Oct;40(1):87–89. doi: 10.1016/S0006-3495(82)84462-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
  16. Hu W., Lazo N. D., Cross T. A. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel. Biochemistry. 1995 Oct 31;34(43):14138–14146. doi: 10.1021/bi00043a019. [DOI] [PubMed] [Google Scholar]
  17. Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
  18. Jones D., Hayon E., Busath D. Tryptophan photolysis is responsible for gramicidin-channel inactivation by ultraviolet light. Biochim Biophys Acta. 1986 Sep 25;861(1):62–66. doi: 10.1016/0005-2736(86)90371-8. [DOI] [PubMed] [Google Scholar]
  19. Jordan P. C., Bacquet R. J., McCammon J. A., Tran P. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophys J. 1989 Jun;55(6):1041–1052. doi: 10.1016/S0006-3495(89)82903-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ketchem R. R., Lee K. C., Huo S., Cross T. A. Macromolecular structural elucidation with solid-state NMR-derived orientational constraints. J Biomol NMR. 1996 Jul;8(1):1–14. doi: 10.1007/BF00198135. [DOI] [PubMed] [Google Scholar]
  21. Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
  22. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  23. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koeppe R. E., 2nd, Killian J. A., Vogt T. C., de Kruijff B., Taylor M. J., Mattice G. L., Greathouse D. V. Palmitoylation-induced conformational changes of specific side chains in the gramicidin transmembrane channel. Biochemistry. 1995 Jul 25;34(29):9299–9306. doi: 10.1021/bi00029a004. [DOI] [PubMed] [Google Scholar]
  25. Koeppe R. E., 2nd, Vogt T. C., Greathouse D. V., Killian J. A., de Kruijff B. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine. Biochemistry. 1996 Mar 19;35(11):3641–3648. doi: 10.1021/bi952046o. [DOI] [PubMed] [Google Scholar]
  26. Lee J., Scheraga H. A., Rackovsky S. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Biopolymers. 1998 Aug;46(2):103–116. doi: 10.1002/(SICI)1097-0282(199808)46:2<103::AID-BIP5>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  27. Lee K. C., Huo S., Cross T. A. Lipid-peptide interface: valine conformation and dynamics in the gramicidin channel. Biochemistry. 1995 Jan 24;34(3):857–867. doi: 10.1021/bi00003a020. [DOI] [PubMed] [Google Scholar]
  28. Lomize A. L., Orekhov V. Iu, Arsen'ev A. S. Utochnenie prostranstvennoi struktury ionnogo kanala gramitsidina A. Bioorg Khim. 1992 Feb;18(2):182–200. [PubMed] [Google Scholar]
  29. Maruyama T., Takeuchi H. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding. Biochemistry. 1997 Sep 9;36(36):10993–11001. doi: 10.1021/bi9710838. [DOI] [PubMed] [Google Scholar]
  30. Neumcke B., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. Biophys J. 1969 Sep;9(9):1160–1170. doi: 10.1016/S0006-3495(69)86443-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nicholson L. K., Cross T. A. Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of beta-type hydrogen bonding. Biochemistry. 1989 Nov 28;28(24):9379–9385. doi: 10.1021/bi00450a019. [DOI] [PubMed] [Google Scholar]
  32. Ostrovsky A. V., Kalinichenko L. P., Emelyanenko V. I., Klimanov A. V., Permyakov E. A. Environment of tryptophan residues in various conformational states of alpha-lactalbumin studied by time-resolved and steady-state fluorescence spectroscopy. Biophys Chem. 1988 Jun;30(2):105–112. doi: 10.1016/0301-4622(88)85008-7. [DOI] [PubMed] [Google Scholar]
  33. Roux B., Karplus M. The normal modes of the gramicidin-A dimer channel. Biophys J. 1988 Mar;53(3):297–309. doi: 10.1016/S0006-3495(88)83107-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sancho M., Martínez G. Electrostatic modeling of dipole-ion interactions in gramicidinlike channels. Biophys J. 1991 Jul;60(1):81–88. doi: 10.1016/S0006-3495(91)82032-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scarlata S. F. Effect of increased chain packing on gramicidin-lipid interactions. Biochemistry. 1991 Oct 15;30(41):9853–9859. doi: 10.1021/bi00105a007. [DOI] [PubMed] [Google Scholar]
  36. Scarlata S. F. The effects of viscosity on gramicidin tryptophan rotational motion. Biophys J. 1988 Dec;54(6):1149–1157. doi: 10.1016/S0006-3495(88)83049-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Separovic F., Gehrmann J., Milne T., Cornell B. A., Lin S. Y., Smith R. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues. Biophys J. 1994 Oct;67(4):1495–1500. doi: 10.1016/S0006-3495(94)80623-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sham Y. Y., Muegge I., Warshel A. The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophys J. 1998 Apr;74(4):1744–1753. doi: 10.1016/S0006-3495(98)77885-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takeuchi H., Nemoto Y., Harada I. Environments and conformations of tryptophan side chains of gramicidin A in phospholipid bilayers studied by Raman spectroscopy. Biochemistry. 1990 Feb 13;29(6):1572–1579. doi: 10.1021/bi00458a031. [DOI] [PubMed] [Google Scholar]
  40. Turano B., Pear M., Busath D. Gramicidin channel selectivity. Molecular mechanics calculations for formamidinium, guanidinium, and acetamidinium. Biophys J. 1992 Jul;63(1):152–161. doi: 10.1016/S0006-3495(92)81574-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Waldbillig R. C., Szabo G. Planar bilayer membranes from pure lipids. Biochim Biophys Acta. 1979 Nov 2;557(2):295–305. doi: 10.1016/0005-2736(79)90328-6. [DOI] [PubMed] [Google Scholar]
  42. Weaver A. J., Kemple M. D., Prendergast F. G. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy. Biophys J. 1988 Jul;54(1):1–15. doi: 10.1016/S0006-3495(88)82925-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Woolf T. B., Roux B. The binding site of sodium in the gramicidin A channel: comparison of molecular dynamics with solid-state NMR data. Biophys J. 1997 May;72(5):1930–1945. doi: 10.1016/S0006-3495(97)78839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Woolley G. A., Wallace B. A. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES