Abstract
We investigated the regulation of cardiac cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels by protein kinase C (PKC) in Xenopus oocytes injected with cRNA encoding the cardiac (exon 5-) CFTR Cl- channel isoform. Membrane currents were recorded using a two-electrode voltage clamp technique. Activators of PKC or a cAMP cocktail elicited robust time-independent Cl- currents in cardiac CFTR-injected oocytes, but not in control water-injected oocytes. The effects of costimulation of both pathways were additive; however, maximum protein kinase A (PKA) activation occluded further activation by PKC. In oocytes expressing either the cardiac (exon 5-) or epithelial (exon 5+) CFTR isoform, Cl- currents activated by PKA were sustained, whereas PKC-activated currents were transient, with initial activation followed by slow current decay in the continued presence of phorbol esters, the latter effect likely due to down-regulation of endogenous PKC activity. The specific PKA inhibitor, adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS), and various protein phosphatase inhibitors were used to determine whether the stimulatory effects of PKC are dependent upon the PKA phosphorylation state of cardiac CFTR channels. Intraoocyte injection of 1,2-bis(2-aminophenoxy)ethane-N,N, N,N-tetraacetic acid (BAPTA) or pretreatment of oocytes with BAPTA-acetoxymethyl-ester (BAPTA-AM) nearly completely prevented dephosphorylation of CFTR currents activated by cAMP, an effect consistent with inhibition of protein phosphatase 2C (PP2C) by chelation of intracellular Mg2+. PKC-induced stimulation of CFTR channels was prevented by inhibition of basal endogenous PKA activity, and phorbol esters failed to stimulate CFTR channels trapped into either the partially PKA phosphorylated (P1) or the fully PKA phosphorylated (P1P2) channel states. Site-directed mutagenesis of serines (S686 and S790) within two consensus PKC phosphorylation sites on the cardiac CFTR regulatory domain attentuated, but did not eliminate, the stimulatory effects of phorbol esters on mutant CFTR channels. The effects of PKC on cardiac CFTR Cl- channels are consistent with a simple model in which PKC phosphorylation of the R domain facilitates PKA-induced transitions from dephosphorylated (D) to partially (P1) phosphorylated and fully (P1P2) phosphorylated channel states.
Full Text
The Full Text of this article is available as a PDF (494.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahinski A., Nairn A. C., Greengard P., Gadsby D. C. Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature. 1989 Aug 31;340(6236):718–721. doi: 10.1038/340718a0. [DOI] [PubMed] [Google Scholar]
- Bear C. E., Duguay F., Naismith A. L., Kartner N., Hanrahan J. W., Riordan J. R. Cl- channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J Biol Chem. 1991 Oct 15;266(29):19142–19145. [PubMed] [Google Scholar]
- Berger H. A., Travis S. M., Welsh M. J. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. J Biol Chem. 1993 Jan 25;268(3):2037–2047. [PubMed] [Google Scholar]
- Bourinet E., Fournier F., Lory P., Charnet P., Nargeot J. Protein kinase C regulation of cardiac calcium channels expressed in Xenopus oocytes. Pflugers Arch. 1992 Jun;421(2-3):247–255. doi: 10.1007/BF00374834. [DOI] [PubMed] [Google Scholar]
- Collier M. L., Hume J. R. Unitary chloride channels activated by protein kinase C in guinea pig ventricular myocytes. Circ Res. 1995 Feb;76(2):317–324. doi: 10.1161/01.res.76.2.317. [DOI] [PubMed] [Google Scholar]
- Dechecchi M. C., Rolfini R., Tamanini A., Gamberi C., Berton G., Cabrini G. Effect of modulation of protein kinase C on the cAMP-dependent chloride conductance in T84 cells. FEBS Lett. 1992 Oct 12;311(1):25–28. doi: 10.1016/0014-5793(92)81358-s. [DOI] [PubMed] [Google Scholar]
- Delaney S. J., Rich D. P., Thomson S. A., Hargrave M. R., Lovelock P. K., Welsh M. J., Wainwright B. J. Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nat Genet. 1993 Aug;4(4):426–431. doi: 10.1038/ng0893-426. [DOI] [PubMed] [Google Scholar]
- Drumm M. L., Wilkinson D. J., Smit L. S., Worrell R. T., Strong T. V., Frizzell R. A., Dawson D. C., Collins F. S. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science. 1991 Dec 20;254(5039):1797–1799. doi: 10.1126/science.1722350. [DOI] [PubMed] [Google Scholar]
- Dulhanty A. M., Riordan J. R. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry. 1994 Apr 5;33(13):4072–4079. doi: 10.1021/bi00179a036. [DOI] [PubMed] [Google Scholar]
- Ehara T., Ishihara K. Anion channels activated by adrenaline in cardiac myocytes. Nature. 1990 Sep 20;347(6290):284–286. doi: 10.1038/347284a0. [DOI] [PubMed] [Google Scholar]
- Fischer H., Illek B., Machen T. E. Regulation of CFTR by protein phosphatase 2B and protein kinase C. Pflugers Arch. 1998 Jul;436(2):175–181. doi: 10.1007/s004240050620. [DOI] [PubMed] [Google Scholar]
- Foskett J. K. ClC and CFTR chloride channel gating. Annu Rev Physiol. 1998;60:689–717. doi: 10.1146/annurev.physiol.60.1.689. [DOI] [PubMed] [Google Scholar]
- Gadsby D. C., Hwang T. C., Horie M., Nagel G., Nairn A. C. Cardiac chloride channels: incremental regulation by phosphorylation/dephosphorylation. Ann N Y Acad Sci. 1993 Dec 20;707:259–274. doi: 10.1111/j.1749-6632.1993.tb38057.x. [DOI] [PubMed] [Google Scholar]
- Gadsby D. C., Nagel G., Hwang T. C. The CFTR chloride channel of mammalian heart. Annu Rev Physiol. 1995;57:387–416. doi: 10.1146/annurev.ph.57.030195.002131. [DOI] [PubMed] [Google Scholar]
- Gadsby D. C., Nairn A. C. Regulation of CFTR channel gating. Trends Biochem Sci. 1994 Nov;19(11):513–518. doi: 10.1016/0968-0004(94)90141-4. [DOI] [PubMed] [Google Scholar]
- Gietzen K., Wüthrich A., Bader H. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981 Jul 30;101(2):418–425. doi: 10.1016/0006-291x(81)91276-6. [DOI] [PubMed] [Google Scholar]
- Hart P., Warth J. D., Levesque P. C., Collier M. L., Geary Y., Horowitz B., Hume J. R. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6343–6348. doi: 10.1073/pnas.93.13.6343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey R. D., Clark C. D., Hume J. R. Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential. J Gen Physiol. 1990 Jun;95(6):1077–1102. doi: 10.1085/jgp.95.6.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey R. D., Hume J. R. Autonomic regulation of a chloride current in heart. Science. 1989 May 26;244(4907):983–985. doi: 10.1126/science.2543073. [DOI] [PubMed] [Google Scholar]
- Horowitz B., Tsung S. S., Hart P., Levesque P. C., Hume J. R. Alternative splicing of CFTR Cl- channels in heart. Am J Physiol. 1993 Jun;264(6 Pt 2):H2214–H2220. doi: 10.1152/ajpheart.1993.264.6.H2214. [DOI] [PubMed] [Google Scholar]
- Hume J. R., Horowitz B. A plethora of cardiac chloride conductances: molecular diversity or a related gene family. J Cardiovasc Electrophysiol. 1995 Apr;6(4):325–331. doi: 10.1111/j.1540-8167.1995.tb00404.x. [DOI] [PubMed] [Google Scholar]
- Hwang T. C., Horie M., Gadsby D. C. Functionally distinct phospho-forms underlie incremental activation of protein kinase-regulated Cl- conductance in mammalian heart. J Gen Physiol. 1993 May;101(5):629–650. doi: 10.1085/jgp.101.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia Y., Mathews C. J., Hanrahan J. W. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem. 1997 Feb 21;272(8):4978–4984. doi: 10.1074/jbc.272.8.4978. [DOI] [PubMed] [Google Scholar]
- Jones D. H., Howard B. H. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. Biotechniques. 1991 Jan;10(1):62–66. [PubMed] [Google Scholar]
- Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
- Lo C. F., Numann R. Independent and exclusive modulation of cardiac delayed rectifying K+ current by protein kinase C and protein kinase A. Circ Res. 1998 Nov 16;83(10):995–1002. doi: 10.1161/01.res.83.10.995. [DOI] [PubMed] [Google Scholar]
- Luo J., Pato M. D., Riordan J. R., Hanrahan J. W. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. Am J Physiol. 1998 May;274(5 Pt 1):C1397–C1410. doi: 10.1152/ajpcell.1998.274.5.C1397. [DOI] [PubMed] [Google Scholar]
- Middleton L. M., Harvey R. D. PKC regulation of cardiac CFTR Cl- channel function in guinea pig ventricular myocytes. Am J Physiol. 1998 Jul;275(1 Pt 1):C293–C302. doi: 10.1152/ajpcell.1998.275.1.C293. [DOI] [PubMed] [Google Scholar]
- Mond J. J., Feuerstein N., June C. H., Balapure A. K., Glazer R. I., Witherspoon K., Brunswick M. Bimodal effect of phorbol ester on B cell activation. Implication for the role of protein kinase C. J Biol Chem. 1991 Mar 5;266(7):4458–4463. [PubMed] [Google Scholar]
- Nagel G., Hwang T. C., Nastiuk K. L., Nairn A. C., Gadsby D. C. The protein kinase A-regulated cardiac Cl- channel resembles the cystic fibrosis transmembrane conductance regulator. Nature. 1992 Nov 5;360(6399):81–84. doi: 10.1038/360081a0. [DOI] [PubMed] [Google Scholar]
- Newton A. C. Regulation of protein kinase C. Curr Opin Cell Biol. 1997 Apr;9(2):161–167. doi: 10.1016/s0955-0674(97)80058-0. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
- Ohno S., Akita Y., Konno Y., Imajoh S., Suzuki K. A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family. Cell. 1988 Jun 3;53(5):731–741. doi: 10.1016/0092-8674(88)90091-8. [DOI] [PubMed] [Google Scholar]
- Oleksa L. M., Hool L. C., Harvey R. D. Alpha 1-adrenergic inhibition of the beta-adrenergically activated Cl- current in guinea pig ventricular myocytes. Circ Res. 1996 Jun;78(6):1090–1099. doi: 10.1161/01.res.78.6.1090. [DOI] [PubMed] [Google Scholar]
- Parker P. J., Bosca L., Dekker L., Goode N. T., Hajibagheri N., Hansra G. Protein kinase C (PKC)-induced PKC degradation: a model for down-regulation. Biochem Soc Trans. 1995 Feb;23(1):153–155. doi: 10.1042/bst0230153. [DOI] [PubMed] [Google Scholar]
- Picciotto M. R., Cohn J. A., Bertuzzi G., Greengard P., Nairn A. C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 Jun 25;267(18):12742–12752. [PubMed] [Google Scholar]
- Shuba L. M., Asai T., McDonald T. F. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes. Br J Pharmacol. 1996 Apr;117(7):1395–1404. doi: 10.1111/j.1476-5381.1996.tb15298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer P., Klee C. B. Serine/threonine phosphatases in the nervous system. Curr Opin Neurobiol. 1991 Jun;1(1):53–64. doi: 10.1016/0959-4388(91)90010-5. [DOI] [PubMed] [Google Scholar]
- Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]
- Travis S. M., Berger H. A., Welsh M. J. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11055–11060. doi: 10.1073/pnas.94.20.11055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
- Vasilets L. A., Schmalzing G., Mädefessel K., Haase W., Schwarz W. Activation of protein kinase C by phorbol ester induces downregulation of the Na+/K(+)-ATPase in oocytes of Xenopus laevis. J Membr Biol. 1990 Nov;118(2):131–142. doi: 10.1007/BF01868470. [DOI] [PubMed] [Google Scholar]
- Walsh K. B. Activation of a heart chloride current during stimulation of protein kinase C. Mol Pharmacol. 1991 Sep;40(3):342–346. [PubMed] [Google Scholar]
- Walsh K. B., Long K. J. Properties of a protein kinase C-activated chloride current in guinea pig ventricular myocytes. Circ Res. 1994 Jan;74(1):121–129. doi: 10.1161/01.res.74.1.121. [DOI] [PubMed] [Google Scholar]
- Weber W. M., Liebold K. M., Reifarth F. W., Clauss W. The Ca(2+)-induced leak current in Xenopus oocytes is indeed mediated through a Cl- channel. J Membr Biol. 1995 Dec;148(3):263–275. doi: 10.1007/BF00235044. [DOI] [PubMed] [Google Scholar]
- Wilkinson D. J., Mansoura M. K., Watson P. Y., Smit L. S., Collins F. S., Dawson D. C. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state. J Gen Physiol. 1996 Jan;107(1):103–119. doi: 10.1085/jgp.107.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie J., Drumm M. L., Zhao J., Ma J., Davis P. B. Human epithelial cystic fibrosis transmembrane conductance regulator without exon 5 maintains partial chloride channel function in intracellular membranes. Biophys J. 1996 Dec;71(6):3148–3156. doi: 10.1016/S0006-3495(96)79508-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang K., Barrington P. L., Martin R. L., Ten Eick R. E. Protein kinase-dependent Cl- currents in feline ventricular myocytes. Circ Res. 1994 Jul;75(1):133–143. doi: 10.1161/01.res.75.1.133. [DOI] [PubMed] [Google Scholar]