Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2072–2080. doi: 10.1016/S0006-3495(99)77363-7

Control of lipid membrane stability by cholesterol content.

S Raffy 1, J Teissié 1
PMCID: PMC1300180  PMID: 10096902

Abstract

Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content.

Full Text

The Full Text of this article is available as a PDF (127.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R., Zimmermann U. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim Biophys Acta. 1980 Apr 24;597(3):637–642. doi: 10.1016/0005-2736(80)90236-9. [DOI] [PubMed] [Google Scholar]
  2. Benz R., Zimmermann U. The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta. 1981 Jan 8;640(1):169–178. doi: 10.1016/0005-2736(81)90542-3. [DOI] [PubMed] [Google Scholar]
  3. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  4. Bretscher M. S., Munro S. Cholesterol and the Golgi apparatus. Science. 1993 Sep 3;261(5126):1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
  5. Chapman D., Owens N. F., Phillips M. C., Walker D. A. Mixed monolayers of phospholipids and cholesterol. Biochim Biophys Acta. 1969;183(3):458–465. doi: 10.1016/0005-2736(69)90160-6. [DOI] [PubMed] [Google Scholar]
  6. Chernomordik L. V., Sukharev S. I., Popov S. V., Pastushenko V. F., Sokirko A. V., Abidor I. G., Chizmadzhev Y. A. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta. 1987 Sep 3;902(3):360–373. doi: 10.1016/0005-2736(87)90204-5. [DOI] [PubMed] [Google Scholar]
  7. Corvera E., Mouritsen O. G., Singer M. A., Zuckermann M. J. The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: theory and experiment. Biochim Biophys Acta. 1992 Jun 30;1107(2):261–270. doi: 10.1016/0005-2736(92)90413-g. [DOI] [PubMed] [Google Scholar]
  8. Darke A., Finer E. G., Flook A. G., Phillips M. C. Complex and cluster formation in mixed lecithincholesterol bilayers. Cooperativity of motion in lipid systems. FEBS Lett. 1971 Nov 1;18(2):326–330. doi: 10.1016/0014-5793(71)80478-7. [DOI] [PubMed] [Google Scholar]
  9. Devaux P. F., Seigneuret M. Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim Biophys Acta. 1985 Jun 12;822(1):63–125. doi: 10.1016/0304-4157(85)90004-8. [DOI] [PubMed] [Google Scholar]
  10. Genco I., Gliozzi A., Relini A., Robello M., Scalas E. Electroporation in symmetric and asymmetric membranes. Biochim Biophys Acta. 1993 Jun 18;1149(1):10–18. doi: 10.1016/0005-2736(93)90019-v. [DOI] [PubMed] [Google Scholar]
  11. Harris J. S., Epps D. E., Davio S. R., Kézdy F. J. Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. Biochemistry. 1995 Mar 21;34(11):3851–3857. doi: 10.1021/bi00011a043. [DOI] [PubMed] [Google Scholar]
  12. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  13. Hui S. W., He N. B. Molecular organization in cholesterol-lecithin bilayers by X-ray and electron diffraction measurements. Biochemistry. 1983 Mar 1;22(5):1159–1164. doi: 10.1021/bi00274a026. [DOI] [PubMed] [Google Scholar]
  14. Kalinowski S., Ibron G., Bryl K., Figaszewski Z. Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim Biophys Acta. 1998 Mar 2;1369(2):204–212. doi: 10.1016/s0005-2736(97)00222-8. [DOI] [PubMed] [Google Scholar]
  15. Ladbrooke B. D., Williams R. M., Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968 Apr 29;150(3):333–340. doi: 10.1016/0005-2736(68)90132-6. [DOI] [PubMed] [Google Scholar]
  16. Lippert J. L., Peticolas W. L. Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1572–1576. doi: 10.1073/pnas.68.7.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lojewska Z., Farkas D. L., Ehrenberg B., Loew L. M. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys J. 1989 Jul;56(1):121–128. doi: 10.1016/S0006-3495(89)82657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McMullen T. P., McElhaney R. N. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta. 1995 Mar 8;1234(1):90–98. doi: 10.1016/0005-2736(94)00266-r. [DOI] [PubMed] [Google Scholar]
  19. Mortensen K., Pfeiffer W., Sackmann E., Knoll W. Structural properties of a phosphatidylcholine-cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram. Biochim Biophys Acta. 1988 Nov 22;945(2):221–245. doi: 10.1016/0005-2736(88)90485-3. [DOI] [PubMed] [Google Scholar]
  20. Mouneimne Y., Tosi P. F., Gazitt Y., Nicolau C. Electro-insertion of xeno-glycophorin into the red blood cell membrane. Biochem Biophys Res Commun. 1989 Feb 28;159(1):34–40. doi: 10.1016/0006-291x(89)92400-5. [DOI] [PubMed] [Google Scholar]
  21. Mukherjee S., Chattopadhyay A. Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry. 1996 Jan 30;35(4):1311–1322. doi: 10.1021/bi951953q. [DOI] [PubMed] [Google Scholar]
  22. Needham D., Hochmuth R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J. 1989 May;55(5):1001–1009. doi: 10.1016/S0006-3495(89)82898-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Papahadjopoulos D., Jacobson K., Nir S., Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973 Jul 6;311(3):330–348. doi: 10.1016/0005-2736(73)90314-3. [DOI] [PubMed] [Google Scholar]
  24. Paula S., Volkov A. G., Van Hoek A. N., Haines T. H., Deamer D. W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996 Jan;70(1):339–348. doi: 10.1016/S0006-3495(96)79575-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raffy S., Teissie J. Insertion of glycophorin A, a transmembraneous protein, in lipid bilayers can be mediated by electropermeabilization. Eur J Biochem. 1995 Jun 1;230(2):722–732. [PubMed] [Google Scholar]
  26. Raffy S., Teissié J. Electroinsertion of glycophorin A in interdigitation-fusion giant unilamellar lipid vesicles. J Biol Chem. 1997 Oct 10;272(41):25524–25530. doi: 10.1074/jbc.272.41.25524. [DOI] [PubMed] [Google Scholar]
  27. Rand R. P., Luzzati V. X-ray diffraction study in water of lipids extracted from human erythrocytes: the position of cholesterol in the lipid lamellae. Biophys J. 1968 Jan;8(1):125–137. doi: 10.1016/S0006-3495(68)86479-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robello M., Gliozzi A. Conductance transition induced by an electric field in lipid bilayers. Biochim Biophys Acta. 1989 Jun 26;982(1):173–176. doi: 10.1016/0005-2736(89)90189-2. [DOI] [PubMed] [Google Scholar]
  29. Rols M. P., Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J. 1990 Nov;58(5):1089–1098. doi: 10.1016/S0006-3495(90)82451-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]
  31. Scarlata S. F. Effects of cholesterol on membrane surfaces as studied by high-pressure fluorescence spectroscopy. Biophys Chem. 1997 Nov;69(1):9–21. doi: 10.1016/s0301-4622(97)00034-3. [DOI] [PubMed] [Google Scholar]
  32. Schwister K., Deuticke B. Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim Biophys Acta. 1985 Jun 27;816(2):332–348. doi: 10.1016/0005-2736(85)90501-2. [DOI] [PubMed] [Google Scholar]
  33. Springer G. F., Nagai Y., Tegtmeyer H. Isolation and properties of human blood-group NN and meconium-Vg antigens. Biochemistry. 1966 Oct;5(10):3254–3272. doi: 10.1021/bi00874a028. [DOI] [PubMed] [Google Scholar]
  34. Subczynski W. K., Wisniewska A., Yin J. J., Hyde J. S., Kusumi A. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 1994 Jun 21;33(24):7670–7681. doi: 10.1021/bi00190a022. [DOI] [PubMed] [Google Scholar]
  35. Teissie J., Tsong T. Y. Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry. 1981 Mar 17;20(6):1548–1554. doi: 10.1021/bi00509a022. [DOI] [PubMed] [Google Scholar]
  36. Teissié J., Rols M. P. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J. 1993 Jul;65(1):409–413. doi: 10.1016/S0006-3495(93)81052-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thulborn K. R., Beddard G. S. The effects of cholesterol on the time-resolved emission anisotropy of 12-(9-anthroyloxy)stearic acid in dipalmitoylphosphatidylcholine bilayers. Biochim Biophys Acta. 1982 Dec 8;693(1):246–252. doi: 10.1016/0005-2736(82)90492-8. [DOI] [PubMed] [Google Scholar]
  38. Vincent M., de Foresta B., Gallay J., Alfsen A. Fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoyl phosphatidylcholine vesicles. Localization of the effects of cholesterol addition. Biochem Biophys Res Commun. 1982 Aug;107(3):914–921. doi: 10.1016/0006-291x(82)90610-6. [DOI] [PubMed] [Google Scholar]
  39. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
  40. Zhelev D. V., Needham D. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta. 1993 Apr 8;1147(1):89–104. doi: 10.1016/0005-2736(93)90319-u. [DOI] [PubMed] [Google Scholar]
  41. el Ouagari K., Benoist H., Sixou S., Teissie J. Electropermeabilization mediates a stable insertion of glycophorin A with Chinese hamster ovary cell membranes. Eur J Biochem. 1994 Feb 1;219(3):1031–1039. doi: 10.1111/j.1432-1033.1994.tb18586.x. [DOI] [PubMed] [Google Scholar]
  42. el Ouagari K., Gabriel B., Benoist H., Teissié J. Electric field-mediated glycophorin insertion in cell membrane is a localized event. Biochim Biophys Acta. 1993 Sep 5;1151(1):105–109. doi: 10.1016/0005-2736(93)90077-d. [DOI] [PubMed] [Google Scholar]
  43. el-Mashak E. M., Tsong T. Y. Ion selectivity of temperature-induced and electric field induced pores in dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1985 Jun 4;24(12):2884–2888. doi: 10.1021/bi00333a010. [DOI] [PubMed] [Google Scholar]
  44. von Heijne G. Membrane protein assembly: rules of the game. Bioessays. 1995 Jan;17(1):25–30. doi: 10.1002/bies.950170107. [DOI] [PubMed] [Google Scholar]
  45. von Heijne G. Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct. 1994;23:167–192. doi: 10.1146/annurev.bb.23.060194.001123. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES