Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2099–2110. doi: 10.1016/S0006-3495(99)77366-2

Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures.

I P Sugár 1, T E Thompson 1, R L Biltonen 1
PMCID: PMC1300183  PMID: 10096905

Abstract

In this paper, we describe a relatively simple lattice model of a two-component, two-state phospholipid bilayer. Application of Monte Carlo methods to this model permits simulation of the observed excess heat capacity versus temperature curves of dimyristoylphosphatidylcholine (DMPC)/distearoylphosphatidylcholine (DSPC) mixtures as well as the lateral distributions of the components and properties related to these distributions. The analysis of the bilayer energy distribution functions reveals that the gel-fluid transition is a continuous transition for DMPC, DSPC, and all DMPC/DSPC mixtures. A comparison of the thermodynamic properties of DMPC/DSPC mixtures with the configurational properties shows that the temperatures characteristics of the configurational properties correlate well with the maxima in the excess heat capacity curves rather than with the onset and completion temperatures of the gel-fluid transition. In the gel-fluid coexistence region, we also found excellent agreement between the threshold temperatures at different system compositions detected in fluorescence recovery after photobleaching experiments and the temperatures at which the percolation probability of the gel clusters is 0.36. At every composition, the calculated mole fraction of gel state molecules at the fluorescence recovery after photobleaching threshold is 0.34 and, at the percolation threshold of gel clusters, it is 0.24. The percolation threshold mole fraction of gel or fluid lipid depends on the packing geometry of the molecules and the interchain interactions. However, it is independent of temperature, system composition, and state of the percolating cluster.

Full Text

The Full Text of this article is available as a PDF (154.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brumbaugh E. E., Huang C. Parameter estimation in binary mixtures of phospholipids. Methods Enzymol. 1992;210:521–539. doi: 10.1016/0076-6879(92)10027-b. [DOI] [PubMed] [Google Scholar]
  2. Brumbaugh E. E., Johnson M. L., Huang C. H. Non-linear least squares analysis of phase diagrams for non-ideal binary mixtures of phospholipids. Chem Phys Lipids. 1990 Jan;52(2):69–78. doi: 10.1016/0009-3084(90)90152-h. [DOI] [PubMed] [Google Scholar]
  3. Brumm T., Jørgensen K., Mouritsen O. G., Bayerl T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/ distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys J. 1996 Mar;70(3):1373–1379. doi: 10.1016/S0006-3495(96)79695-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clerc S. G., Thompson T. E. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys J. 1995 Jun;68(6):2333–2341. doi: 10.1016/S0006-3495(95)80415-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cruzeiro-Hansson L., Mouritsen O. G. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim Biophys Acta. 1988 Sep 15;944(1):63–72. doi: 10.1016/0005-2736(88)90316-1. [DOI] [PubMed] [Google Scholar]
  6. Ferrenberg AM, Swendsen RH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett. 1988 Dec 5;61(23):2635–2638. doi: 10.1103/PhysRevLett.61.2635. [DOI] [PubMed] [Google Scholar]
  7. Ipsen J. H., Mouritsen O. G. Modelling the phase equilibria in two-component membranes of phospholipids with different acyl-chain lengths. Biochim Biophys Acta. 1988 Oct 6;944(2):121–134. doi: 10.1016/0005-2736(88)90425-7. [DOI] [PubMed] [Google Scholar]
  8. Jan N., Lookman T., Pink D. A. On computer simulation methods used to study models of two-component lipid bilayers. Biochemistry. 1984 Jul 3;23(14):3227–3231. doi: 10.1021/bi00309a017. [DOI] [PubMed] [Google Scholar]
  9. Jerala R., Almeida P. F., Biltonen R. L. Simulation of the gel-fluid transition in a membrane composed of lipids with two connected acyl chains: application of a dimer-move step. Biophys J. 1996 Aug;71(2):609–615. doi: 10.1016/S0006-3495(96)79261-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jørgensen K., Sperotto M. M., Mouritsen O. G., Ipsen J. H., Zuckermann M. J. Phase equilibria and local structure in binary lipid bilayers. Biochim Biophys Acta. 1993 Oct 10;1152(1):135–145. doi: 10.1016/0005-2736(93)90240-z. [DOI] [PubMed] [Google Scholar]
  11. Knoll W., Ibel K., Sackmann E. Small-angle neutron scattering study of lipid phase diagrams by the contrast variation method. Biochemistry. 1981 Oct 27;20(22):6379–6383. doi: 10.1021/bi00525a015. [DOI] [PubMed] [Google Scholar]
  12. Lu D., Vavasour I., Morrow M. R. Smoothed acyl chain orientational order parameter profiles in dimyristoylphosphatidylcholine-distearoylphosphatidylcholine mixtures: a 2H-NMR study. Biophys J. 1995 Feb;68(2):574–583. doi: 10.1016/S0006-3495(95)80219-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mendelsohn R., Maisano J. Use of deuterated phospholipids in Raman spectroscopic studies of membrane structure. I. Multilayers of dimyristoyl phosphatidylcholine (and its -d54 derivative) with distearoyl phosphatidylcholine. Biochim Biophys Acta. 1978 Jan 19;506(2):192–201. doi: 10.1016/0005-2736(78)90390-5. [DOI] [PubMed] [Google Scholar]
  15. Mezei M., Beveridge D. L. Free energy simulations. Ann N Y Acad Sci. 1986;482:1–23. doi: 10.1111/j.1749-6632.1986.tb20933.x. [DOI] [PubMed] [Google Scholar]
  16. Pedersen S., Jørgensen K., Baekmark T. R., Mouritsen O. G. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. Biophys J. 1996 Aug;71(2):554–560. doi: 10.1016/S0006-3495(96)79279-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Piknová B., Marsh D., Thompson T. E. Fluorescence-quenching study of percolation and compartmentalization in two-phase lipid bilayers. Biophys J. 1996 Aug;71(2):892–897. doi: 10.1016/S0006-3495(96)79291-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sankaram M. B., Marsh D., Thompson T. E. Determination of fluid and gel domain sizes in two-component, two-phase lipid bilayers. An electron spin resonance spin label study. Biophys J. 1992 Aug;63(2):340–349. doi: 10.1016/S0006-3495(92)81619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sankaram M. B., Thompson T. E. Deuterium magnetic resonance study of phase equilibria and membrane thickness in binary phospholipid mixed bilayers. Biochemistry. 1992 Sep 8;31(35):8258–8268. doi: 10.1021/bi00150a020. [DOI] [PubMed] [Google Scholar]
  20. Schram V., Lin H. N., Thompson T. E. Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers. Biophys J. 1996 Oct;71(4):1811–1822. doi: 10.1016/S0006-3495(96)79382-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sugár I. P., Biltonen R. L., Mitchard N. Monte Carlo simulations of membranes: phase transition of small unilamellar dipalmitoylphosphatidylcholine vesicles. Methods Enzymol. 1994;240:569–593. doi: 10.1016/s0076-6879(94)40064-4. [DOI] [PubMed] [Google Scholar]
  22. Sugár I. P., Monticelli G. Interrelationships between the phase diagrams of the two-component phospholipid bilayers. Biophys J. 1985 Aug;48(2):283–288. doi: 10.1016/S0006-3495(85)83781-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suurkuusk J., Lentz B. R., Barenholz Y., Biltonen R. L., Thompson T. E. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1976 Apr 6;15(7):1393–1401. doi: 10.1021/bi00652a007. [DOI] [PubMed] [Google Scholar]
  24. Vaz W. L., Melo E. C., Thompson T. E. Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer. Biophys J. 1989 Nov;56(5):869–876. doi: 10.1016/S0006-3495(89)82733-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilkinson D. A., Nagle J. F. Dilatometric study of binary mixtures of phosphatidylcholines. Biochemistry. 1979 Sep 18;18(19):4244–4249. doi: 10.1021/bi00586a032. [DOI] [PubMed] [Google Scholar]
  26. Wimley W. C., Thompson T. E. Exchange and flip-flop of dimyristoylphosphatidylcholine in liquid-crystalline, gel, and two-component, two-phase large unilamellar vesicles. Biochemistry. 1990 Feb 6;29(5):1296–1303. doi: 10.1021/bi00457a027. [DOI] [PubMed] [Google Scholar]
  27. Wimley W. C., Thompson T. E. Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine large unilamellar vesicles. Biochemistry. 1991 Feb 12;30(6):1702–1709. doi: 10.1021/bi00220a036. [DOI] [PubMed] [Google Scholar]
  28. van Dijck P. W., Kaper A. J., Oonk H. A., de Gier J. Miscibility properties of binary phosphatidylcholine mixtures. A calorimetric study. Biochim Biophys Acta. 1977 Oct 3;470(1):58–69. doi: 10.1016/0005-2736(77)90061-x. [DOI] [PubMed] [Google Scholar]
  29. von Dreele P. H. Estimation of lateral species separation from phase transitions in nonideal two-dimensional lipid mixtures. Biochemistry. 1978 Sep 19;17(19):3939–3943. doi: 10.1021/bi00612a009. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES