Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2121–2141. doi: 10.1016/S0006-3495(99)77368-6

Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay.

F Nicol 1, S Nir 1, F C Szoka Jr 1
PMCID: PMC1300185  PMID: 10096907

Abstract

We determined the orientation of a biotinylated version of the pore-forming peptide GALA (WEAALAEALAEALAEHLAEALAEALEALAA) at pH 5.0 in large unilamellar phosphatidylcholine vesicles, using the enhancement of BODIPY-avidin fluorescence subsequent to its irreversible binding to a biotin moiety. GALA and its variants were biotinylated at the N- or C-terminus. BODIPY-avidin was either added externally or was pre-encapsulated in vesicles to assess the fraction of liposome-bound biotinylated GALA that exposed its labeled terminus to the external or internal side of the bilayer, respectively. Under conditions where most of the membrane-bound peptides were involved in transmembrane aggregates and formed aqueous pores (at a lipid/bound peptide molar ratio of 2500/1), the head-to-tail (N- to C-terminus) orientation of the membrane-inserted peptides was such that 3/4 of the peptides exposed their N-terminus on the inside of the vesicle and their C-terminus on the outside. Under conditions resulting in reduced pore formation (at higher lipid/peptide molar ratios), we observed an increase in the fraction of GALA termini exposed to the outside of the vesicle. These results are consistent with a model (Parente et al., Biochemistry, 29:8720, 1990) that requires a critical number of peptides (M) in an aggregate to form a transbilayer structure. When the peptides form an aggregate of size i, with i < M = 4 to 6, the orientation of the peptides is mostly parallel to the membrane surface, such that both termini of the biotinylated peptide are exposed to external BODIPY-avidin. This BODIPY-avidin/biotin binding assay should be useful to determine the orientation of other membrane-interacting molecules.

Full Text

The Full Text of this article is available as a PDF (219.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Barranger-Mathys M., Cafiso D. S. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Biochemistry. 1996 Jan 16;35(2):498–505. doi: 10.1021/bi951985d. [DOI] [PubMed] [Google Scholar]
  3. Batenburg A. M., de Kruijff B. Modulation of membrane surface curvature by peptide-lipid interactions. Biosci Rep. 1988 Aug;8(4):299–307. doi: 10.1007/BF01115220. [DOI] [PubMed] [Google Scholar]
  4. Bechinger B., Kim Y., Chirlian L. E., Gesell J., Neumann J. M., Montal M., Tomich J., Zasloff M., Opella S. J. Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR. 1991 Jul;1(2):167–173. doi: 10.1007/BF01877228. [DOI] [PubMed] [Google Scholar]
  5. Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
  6. Bentz J., Nir S. Aggregation of colloidal particles modeled as a dynamical process. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1634–1637. doi: 10.1073/pnas.78.3.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Biwersi J., Emans N., Verkman A. S. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12484–12489. doi: 10.1073/pnas.93.22.12484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boman H. G. Antimicrobial peptides. Chairman's opening remarks. Ciba Found Symp. 1994;186:1–4. [PubMed] [Google Scholar]
  9. Brachais L., Duclohier H., Mayer C., Davoust D., Molle G. Influence of proline-14 substitution on the secondary structure in a synthetic analogue of alamethicin. Biopolymers. 1995 Oct;36(4):547–558. doi: 10.1002/bip.360360416. [DOI] [PubMed] [Google Scholar]
  10. Cafiso D. S. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
  11. DeGrado W. F., Wasserman Z. R., Lear J. D. Protein design, a minimalist approach. Science. 1989 Feb 3;243(4891):622–628. doi: 10.1126/science.2464850. [DOI] [PubMed] [Google Scholar]
  12. Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984 Mar 27;23(7):1532–1538. doi: 10.1021/bi00302a029. [DOI] [PubMed] [Google Scholar]
  13. Emans N., Biwersi J., Verkman A. S. Imaging of endosome fusion in BHK fibroblasts based on a novel fluorimetric avidin-biotin binding assay. Biophys J. 1995 Aug;69(2):716–728. doi: 10.1016/S0006-3495(95)79947-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Epand R. M., Shai Y., Segrest J. P., Anantharamaiah G. M. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37(5):319–338. doi: 10.1002/bip.360370504. [DOI] [PubMed] [Google Scholar]
  15. Fattal E., Nir S., Parente R. A., Szoka F. C., Jr Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry. 1994 May 31;33(21):6721–6731. doi: 10.1021/bi00187a044. [DOI] [PubMed] [Google Scholar]
  16. Gazit E., Boman A., Boman H. G., Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995 Sep 12;34(36):11479–11488. doi: 10.1021/bi00036a021. [DOI] [PubMed] [Google Scholar]
  17. Goormaghtigh E., De Meutter J., Szoka F., Cabiaux V., Parente R. A., Ruysschaert J. M. Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. An infrared-spectroscopic approach. Eur J Biochem. 1991 Jan 30;195(2):421–429. doi: 10.1111/j.1432-1033.1991.tb15721.x. [DOI] [PubMed] [Google Scholar]
  18. He K., Ludtke S. J., Huang H. W., Worcester D. L. Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry. 1995 Dec 5;34(48):15614–15618. doi: 10.1021/bi00048a002. [DOI] [PubMed] [Google Scholar]
  19. He K., Ludtke S. J., Worcester D. L., Huang H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. doi: 10.1016/S0006-3495(96)79835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
  21. Kaduk C., Duclohier H., Dathe M., Wenschuh H., Beyermann M., Molle G., Bienert M. Influence of proline position upon the ion channel activity of alamethicin. Biophys J. 1997 May;72(5):2151–2159. doi: 10.1016/S0006-3495(97)78858-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lear J. D., Wasserman Z. R., DeGrado W. F. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988 May 27;240(4856):1177–1181. doi: 10.1126/science.2453923. [DOI] [PubMed] [Google Scholar]
  23. Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
  24. Ludtke S. J., He K., Wu Y., Huang H. W. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta. 1994 Feb 23;1190(1):181–184. doi: 10.1016/0005-2736(94)90050-7. [DOI] [PubMed] [Google Scholar]
  25. Lüneberg J., Martin I., Nüssler F., Ruysschaert J. M., Herrmann A. Structure and topology of the influenza virus fusion peptide in lipid bilayers. J Biol Chem. 1995 Nov 17;270(46):27606–27614. doi: 10.1074/jbc.270.46.27606. [DOI] [PubMed] [Google Scholar]
  26. Matsuzaki K., Murase O., Miyajima K. Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry. 1995 Oct 3;34(39):12553–12559. doi: 10.1021/bi00039a009. [DOI] [PubMed] [Google Scholar]
  27. Matsuzaki K., Murase O., Tokuda H., Funakoshi S., Fujii N., Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994 Mar 22;33(11):3342–3349. doi: 10.1021/bi00177a027. [DOI] [PubMed] [Google Scholar]
  28. Matsuzaki K., Nakamura A., Murase O., Sugishita K., Fujii N., Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997 Feb 25;36(8):2104–2111. doi: 10.1021/bi961870p. [DOI] [PubMed] [Google Scholar]
  29. Matsuzaki K., Yoneyama S., Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997 Aug;73(2):831–838. doi: 10.1016/S0006-3495(97)78115-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matsuzaki K., Yoneyama S., Murase O., Miyajima K. Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry. 1996 Jun 25;35(25):8450–8456. doi: 10.1021/bi960342a. [DOI] [PubMed] [Google Scholar]
  31. Nicol F., Nir S., Szoka F. C., Jr Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophys J. 1996 Dec;71(6):3288–3301. doi: 10.1016/S0006-3495(96)79521-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Parente R. A., Nadasdi L., Subbarao N. K., Szoka F. C., Jr Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence. Biochemistry. 1990 Sep 18;29(37):8713–8719. doi: 10.1021/bi00489a030. [DOI] [PubMed] [Google Scholar]
  33. Parente R. A., Nir S., Szoka F. C., Jr Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 1990 Sep 18;29(37):8720–8728. doi: 10.1021/bi00489a031. [DOI] [PubMed] [Google Scholar]
  34. Parente R. A., Nir S., Szoka F. C., Jr pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide. J Biol Chem. 1988 Apr 5;263(10):4724–4730. [PubMed] [Google Scholar]
  35. Pugliese L., Coda A., Malcovati M., Bolognesi M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. J Mol Biol. 1993 Jun 5;231(3):698–710. doi: 10.1006/jmbi.1993.1321. [DOI] [PubMed] [Google Scholar]
  36. Qiu X. Q., Jakes K. S., Finkelstein A., Slatin S. L. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane. J Biol Chem. 1994 Mar 11;269(10):7483–7488. [PubMed] [Google Scholar]
  37. Qiu X. Q., Jakes K. S., Kienker P. K., Finkelstein A., Slatin S. L. Major transmembrane movement associated with colicin Ia channel gating. J Gen Physiol. 1996 Mar;107(3):313–328. doi: 10.1085/jgp.107.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rapaport D., Peled R., Nir S., Shai Y. Reversible surface aggregation in pore formation by pardaxin. Biophys J. 1996 Jun;70(6):2502–2512. doi: 10.1016/S0006-3495(96)79822-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rex S., Schwarz G. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry. 1998 Feb 24;37(8):2336–2345. doi: 10.1021/bi971009p. [DOI] [PubMed] [Google Scholar]
  40. Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
  41. Schwarz G., Arbuzova A. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta. 1995 Oct 4;1239(1):51–57. doi: 10.1016/0005-2736(95)00134-o. [DOI] [PubMed] [Google Scholar]
  42. Shai Y. Pardaxin: channel formation by a shark repellant peptide from fish. Toxicology. 1994 Feb 28;87(1-3):109–129. doi: 10.1016/0300-483x(94)90157-0. [DOI] [PubMed] [Google Scholar]
  43. Slatin S. L., Qiu X. Q., Jakes K. S., Finkelstein A. Identification of a translocated protein segment in a voltage-dependent channel. Nature. 1994 Sep 8;371(6493):158–161. doi: 10.1038/371158a0. [DOI] [PubMed] [Google Scholar]
  44. Smith R., Separovic F., Milne T. J., Whittaker A., Bennett F. M., Cornell B. A., Makriyannis A. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol. 1994 Aug 19;241(3):456–466. doi: 10.1006/jmbi.1994.1520. [DOI] [PubMed] [Google Scholar]
  45. Subbarao N. K., Fielding C. J., Hamilton R. L., Szoka F. C., Jr Lecithin:cholesterol acyltransferase activation by synthetic amphipathic peptides. Proteins. 1988;3(3):187–198. doi: 10.1002/prot.340030307. [DOI] [PubMed] [Google Scholar]
  46. Subbarao N. K., Parente R. A., Szoka F. C., Jr, Nadasdi L., Pongracz K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry. 1987 Jun 2;26(11):2964–2972. doi: 10.1021/bi00385a002. [DOI] [PubMed] [Google Scholar]
  47. Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tytler E. M., Segrest J. P., Epand R. M., Nie S. Q., Epand R. F., Mishra V. K., Venkatachalapathi Y. V., Anantharamaiah G. M. Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem. 1993 Oct 15;268(29):22112–22118. [PubMed] [Google Scholar]
  50. Vogel H., Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. doi: 10.1016/S0006-3495(86)83497-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wu Y., Huang H. W., Olah G. A. Method of oriented circular dichroism. Biophys J. 1990 Apr;57(4):797–806. doi: 10.1016/S0006-3495(90)82599-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES