Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2166–2176. doi: 10.1016/S0006-3495(99)77371-6

Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers.

P A Wahr 1, J M Metzger 1
PMCID: PMC1300188  PMID: 10096910

Abstract

Thin filament regulation of contraction is thought to involve the binding of two activating ligands: Ca2+ and strongly bound cross-bridges. The specific cross-bridge states required to promote thin filament activation have not been identified. This study examines the relationship between cross-bridge cycling and thin filament activation by comparing the results of kinetic experiments using the Ca2+ sensitizers caffeine and bepridil. In single skinned rat soleus fibers, 30 mM caffeine produced a leftward shift in the tension-pCa relation from 6.03 +/- 0.03 to 6.51 +/- 0.03 pCa units and lowered the maximum tension to 0.60 +/- 0.01 of the control tension. In addition, the rate of tension redevelopment (ktr) was decreased from 3.51 +/- 0.12 s-1 to 2.70 +/- 0.19 s-1, and Vmax decreased from 1.24 +/- 0.07 to 0.64 +/- 0.02 M.L./s. Bepridil produced a similar shift in the tension-pCa curves but had no effect on the kinetics. Thus bepridil increases the Ca2+ sensitivity through direct effects on TnC, whereas caffeine has significant effects on the cross-bridge interaction. Interestingly, caffeine also produced a significant increase in stiffness under relaxing conditions (pCa 9.0), indicating that caffeine induces some strongly bound cross-bridges, even in the absence of Ca2+. The results are interpreted in terms of a model integrating cross-bridge cycling with a three-state thin-filament activation model. Significantly, strongly bound, non-tension-producing cross-bridges were essential to modeling of complete activation of the thin filament.

Full Text

The Full Text of this article is available as a PDF (147.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Westerblad H. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J Physiol. 1995 Sep 1;487(Pt 2):331–342. doi: 10.1113/jphysiol.1995.sp020883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borovikov Y. S., Nowak E., Khoroshev M. I., Dabrowska R. The effect of Ca2+ on the conformation of tropomyosin and actin in regulated actin filaments with or without bound myosin subfragment 1. Biochim Biophys Acta. 1993 Jun 4;1163(3):280–286. doi: 10.1016/0167-4838(93)90163-l. [DOI] [PubMed] [Google Scholar]
  3. Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988 May;85(9):3265–3269. doi: 10.1073/pnas.85.9.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruns R. F., Katims J. J., Annau Z., Snyder S. H., Daly J. W. Adenosine receptor interactions and anxiolytics. Neuropharmacology. 1983 Dec;22(12B):1523–1529. doi: 10.1016/0028-3908(83)90121-1. [DOI] [PubMed] [Google Scholar]
  5. Caputo C., Edman K. A., Lou F., Sun Y. B. Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres. J Physiol. 1994 Jul 1;478(Pt 1):137–148. doi: 10.1113/jphysiol.1994.sp020237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  7. Fredholm B. B. Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol. 1995 Feb;76(2):93–101. doi: 10.1111/j.1600-0773.1995.tb00111.x. [DOI] [PubMed] [Google Scholar]
  8. Gordon A. M., Ridgway E. B. Extra calcium on shortening in barnacle muscle. Is the decrease in calcium binding related to decreased cross-bridge attachment, force, or length? J Gen Physiol. 1987 Sep;90(3):321–340. doi: 10.1085/jgp.90.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Güth K., Potter J. D. Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem. 1987 Oct 5;262(28):13627–13635. [PubMed] [Google Scholar]
  10. Hancock W. O., Huntsman L. L., Gordon A. M. Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. J Muscle Res Cell Motil. 1997 Dec;18(6):671–681. doi: 10.1023/a:1018635907091. [DOI] [PubMed] [Google Scholar]
  11. Holmes K. C. The actomyosin interaction and its control by tropomyosin. Biophys J. 1995 Apr;68(4 Suppl):2S–7S. [PubMed] [Google Scholar]
  12. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  13. Kleerekoper Q., Liu W., Choi D., Putkey J. A. Identification of binding sites for bepridil and trifluoperazine on cardiac troponin C. J Biol Chem. 1998 Apr 3;273(14):8153–8160. doi: 10.1074/jbc.273.14.8153. [DOI] [PubMed] [Google Scholar]
  14. Landesberg A., Sideman S. Mechanical regulation of cardiac muscle by coupling calcium kinetics with cross-bridge cycling: a dynamic model. Am J Physiol. 1994 Aug;267(2 Pt 2):H779–H795. doi: 10.1152/ajpheart.1994.267.2.H779. [DOI] [PubMed] [Google Scholar]
  15. Martyn D. A., Chase P. B., Hannon J. D., Huntsman L. L., Kushmerick M. J., Gordon A. M. Unloaded shortening of skinned muscle fibers from rabbit activated with and without Ca2+. Biophys J. 1994 Nov;67(5):1984–1993. doi: 10.1016/S0006-3495(94)80681-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McKillop D. F., Geeves M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. doi: 10.1016/S0006-3495(93)81110-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Metzger J. M., Moss R. L. Myosin light chain 2 modulates calcium-sensitive cross-bridge transitions in vertebrate skeletal muscle. Biophys J. 1992 Aug;63(2):460–468. doi: 10.1016/S0006-3495(92)81614-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morimoto S. Effect of myosin cross-bridge interaction with actin on the Ca2(+)-binding properties of troponin C in fast skeletal myofibrils. J Biochem. 1991 Jan;109(1):120–126. doi: 10.1093/oxfordjournals.jbchem.a123331. [DOI] [PubMed] [Google Scholar]
  19. Moss R. L. Effects on shortening velocity of rabbit skeletal muscle due to variations in the level of thin-filament activation. J Physiol. 1986 Aug;377:487–505. doi: 10.1113/jphysiol.1986.sp016199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Palmer S., Kentish J. C. Developmental differences and regional similarities in the responses of rat cardiac skinned muscles to acidosis, inorganic phosphate and caffeine. J Mol Cell Cardiol. 1996 Apr;28(4):797–805. doi: 10.1006/jmcc.1996.0074. [DOI] [PubMed] [Google Scholar]
  21. Palmer S., Kentish J. C. Differential effects of the Ca2+ sensitizers caffeine and CGP 48506 on the relaxation rate of rat skinned cardiac trabeculae. Circ Res. 1997 May;80(5):682–687. doi: 10.1161/01.res.80.5.682. [DOI] [PubMed] [Google Scholar]
  22. Popp D., Maéda Y. Calcium ions and the structure of muscle actin filament. An X-ray diffraction study. J Mol Biol. 1993 Jan 20;229(2):279–285. doi: 10.1006/jmbi.1993.1032. [DOI] [PubMed] [Google Scholar]
  23. Powers F. M., Solaro R. J. Caffeine alters cardiac myofilament activity and regulation independently of Ca2+ binding to troponin C. Am J Physiol. 1995 Jun;268(6 Pt 1):C1348–C1353. doi: 10.1152/ajpcell.1995.268.6.C1348. [DOI] [PubMed] [Google Scholar]
  24. Regnier M., Martyn D. A., Chase P. B. Calmidazolium alters Ca2+ regulation of tension redevelopment rate in skinned skeletal muscle. Biophys J. 1996 Nov;71(5):2786–2794. doi: 10.1016/S0006-3495(96)79471-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Regnier M., Morris C., Homsher E. Regulation of the cross-bridge transition from a weakly to strongly bound state in skinned rabbit muscle fibers. Am J Physiol. 1995 Dec;269(6 Pt 1):C1532–C1539. doi: 10.1152/ajpcell.1995.269.6.C1532. [DOI] [PubMed] [Google Scholar]
  26. Schoenberg M. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys J. 1988 Jul;54(1):135–148. doi: 10.1016/S0006-3495(88)82938-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Solaro R. J., Bousquet P., Johnson J. D. Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca++ binding by bepridil. J Pharmacol Exp Ther. 1986 Aug;238(2):502–507. [PubMed] [Google Scholar]
  28. Vibert P., Craig R., Lehman W. Steric-model for activation of muscle thin filaments. J Mol Biol. 1997 Feb 14;266(1):8–14. doi: 10.1006/jmbi.1996.0800. [DOI] [PubMed] [Google Scholar]
  29. Wahr P. A., Cantor H. C., Metzger J. M. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers. Biophys J. 1997 Feb;72(2 Pt 1):822–834. doi: 10.1016/s0006-3495(97)78716-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wendt I. R., Stephenson D. G. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch. 1983 Aug;398(3):210–216. doi: 10.1007/BF00657153. [DOI] [PubMed] [Google Scholar]
  31. Westerblad H., Allen D. G. Mechanisms underlying changes of tetanic [Ca2+]i and force in skeletal muscle. Acta Physiol Scand. 1996 Mar;156(3):407–416. doi: 10.1046/j.1365-201X.1996.196000.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES