Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2198–2207. doi: 10.1016/S0006-3495(99)77375-3

Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching.

N Chadborn 1, J Bryant 1, A J Bain 1, P O'Shea 1
PMCID: PMC1300192  PMID: 10096914

Abstract

Ligand-dependent structural changes in serum albumin are suggested to underlie its role in physiological solute transport and receptor-mediated cellular selection. Evidence of ligand-induced (oleic acid) structural changes in serum albumin are shown in both time-resolved and steady-state fluorescence quenching and anisotropy measurements of tryptophan 214 (Trp214). These studies were augmented with column chromatography separations. It was found that both the steady-state and time-resolved Stern-Volmer collisional quenching studies of Trp214 with acrylamide pointed to the existence of an oleate-dependent structural transformation. The bimolecular quenching rate constant of defatted human serum albumin, 1.96 x 10(9) M-1 s-1, decreased to 0.94 x 10(9) M-1 s-1 after incubation with oleic acid (9:1). Furthermore, Stern-Volmer quenching studies following fractionation of the structural forms by hydrophobic interaction chromatography were in accordance with this interpretation. Time-resolved fluorescence anisotropy measurements of the Trp214 residue yielded information of motion within the protein together with the whole protein molecule. Characteristic changes in these motions were observed after the binding of oleate to albumin. The addition of oleate was accompanied by an increase in the rotational diffusion time of the albumin molecule from approximately 22 to 33.6 ns. Within the body of the protein, however, the rotational diffusion time for Trp214 exhibited a slight decrease from 191 to 182 ps and was accompanied by a decrease in the extent of the angular motion of Trp214, indicating a transition after oleate binding to a more spatially restricted but less viscous environment.

Full Text

The Full Text of this article is available as a PDF (118.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameloot M., Hendrickx H., Herreman W., Pottel H., Van Cauwelaert F., van der Meer W. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Experimental verification on unilamellar vesicles and lipid/alpha-lactalbumin complexes. Biophys J. 1984 Oct;46(4):525–539. doi: 10.1016/S0006-3495(84)84050-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bjerrum O. J., Bjerrum M. J., Heegaard N. H. Electrophoretic and chromatographic differentiation of two forms of albumin in equilibrium at neutral pH: new screening techniques for determination of ligand binding to albumin. Electrophoresis. 1995 Aug;16(8):1401–1407. doi: 10.1002/elps.11501601232. [DOI] [PubMed] [Google Scholar]
  3. Callis P. R. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol. 1997;278:113–150. doi: 10.1016/s0076-6879(97)78009-1. [DOI] [PubMed] [Google Scholar]
  4. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  5. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  6. Curry S., Mandelkow H., Brick P., Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998 Sep;5(9):827–835. doi: 10.1038/1869. [DOI] [PubMed] [Google Scholar]
  7. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues and protein dynamics. Biochemistry. 1977 Dec 13;16(25):5546–5551. doi: 10.1021/bi00644a024. [DOI] [PubMed] [Google Scholar]
  8. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  9. Gentin M., Vincent M., Brochon J. C., Livesey A. K., Cittanova N., Gallay J. Time-resolved fluorescence of the single tryptophan residue in rat alpha-fetoprotein and rat serum albumin: analysis by the maximum-entropy method. Biochemistry. 1990 Nov 13;29(45):10405–10412. doi: 10.1021/bi00497a016. [DOI] [PubMed] [Google Scholar]
  10. Gratton E., Alcala J. R., Marriott G. Rotations of tryptophan residues in proteins. Biochem Soc Trans. 1986 Oct;14(5):835–838. doi: 10.1042/bst0140835. [DOI] [PubMed] [Google Scholar]
  11. Hansen T. B. Skadebehandlingen i Ringkøbing Amt. 3. Befolkningen og de alment praktiserende loegers holdninger og adfoerd i relation til skadebehandling. Ugeskr Laeger. 1992 Oct 26;154(44):3040–3044. [PubMed] [Google Scholar]
  12. Hochstrasser R. M., Negus D. K. Picosecond fluorescence decay of tryptophans in myoglobin. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4399–4403. doi: 10.1073/pnas.81.14.4399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ichiye T., Karplus M. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study. Biochemistry. 1983 Jun 7;22(12):2884–2893. doi: 10.1021/bi00281a017. [DOI] [PubMed] [Google Scholar]
  14. Janatova J., Fuller J. K., Hunter M. J. The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content. J Biol Chem. 1968 Jul 10;243(13):3612–3622. [PubMed] [Google Scholar]
  15. Janes S. M., Holtom G., Ascenzi P., Brunori M., Hochstrasser R. M. Fluorescence and energy transfer of tryptophans in Aplysia myoglobin. Biophys J. 1987 Apr;51(4):653–660. doi: 10.1016/S0006-3495(87)83390-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lakowicz J. R., Gryczynski I. Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation. Biophys Chem. 1992 Nov;45(1):1–6. doi: 10.1016/0301-4622(92)87017-d. [DOI] [PubMed] [Google Scholar]
  18. Lakowicz J. R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973 Oct 9;12(21):4171–4179. doi: 10.1021/bi00745a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ludescher R. D., Volwerk J. J., de Haas G. H., Hudson B. S. Complex photophysics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. Biochemistry. 1985 Dec 3;24(25):7240–7249. doi: 10.1021/bi00346a033. [DOI] [PubMed] [Google Scholar]
  20. Munro I., Pecht I., Stryer L. Subnanosecond motions of tryptophan residues in proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):56–60. doi: 10.1073/pnas.76.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Narazaki R., Maruyama T., Otagiri M. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochim Biophys Acta. 1997 Apr 4;1338(2):275–281. doi: 10.1016/s0167-4838(96)00221-x. [DOI] [PubMed] [Google Scholar]
  22. Nishimoto E., Yamashita S., Szabo A. G., Imoto T. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry. 1998 Apr 21;37(16):5599–5607. doi: 10.1021/bi9718651. [DOI] [PubMed] [Google Scholar]
  23. Rose H., Conventz M., Fischer Y., Jüngling E., Hennecke T., Kammermeier H. Long-chain fatty acid-binding to albumin: re-evaluation with directly measured concentrations. Biochim Biophys Acta. 1994 Dec 8;1215(3):321–326. doi: 10.1016/0005-2760(94)90060-4. [DOI] [PubMed] [Google Scholar]
  24. Ross J. B., Rousslang K. W., Brand L. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24). Biochemistry. 1981 Jul 21;20(15):4361–4369. doi: 10.1021/bi00518a020. [DOI] [PubMed] [Google Scholar]
  25. Ross J. B., Schmidt C. J., Brand L. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase. Biochemistry. 1981 Jul 21;20(15):4369–4377. doi: 10.1021/bi00518a021. [DOI] [PubMed] [Google Scholar]
  26. Soetewey F., Rosseneu-Motreff M., Lamote R., Peeters H. Size and shape determination of native and defatted bovine serum albumin monomers. II. Influence of the fatty acid content on the conformation of bovine serum albumin monomers. J Biochem. 1972 Apr;71(4):705–710. [PubMed] [Google Scholar]
  27. Valeur B., Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol. 1977 May;25(5):441–444. doi: 10.1111/j.1751-1097.1977.tb09168.x. [DOI] [PubMed] [Google Scholar]
  28. Wall J., Ayoub F., O'Shea P. Interactions of macromolecules with the mammalian cell surface. J Cell Sci. 1995 Jul;108(Pt 7):2673–2682. doi: 10.1242/jcs.108.7.2673. [DOI] [PubMed] [Google Scholar]
  29. Weisiger R., Gollan J., Ockner R. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science. 1981 Mar 6;211(4486):1048–1051. doi: 10.1126/science.6258226. [DOI] [PubMed] [Google Scholar]
  30. Willis K. J., Neugebauer W., Sikorska M., Szabo A. G. Probing alpha-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation. Biophys J. 1994 May;66(5):1623–1630. doi: 10.1016/S0006-3495(94)80954-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES