Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2208–2215. doi: 10.1016/S0006-3495(99)77376-5

Thiol oxidation of actin produces dimers that enhance the elasticity of the F-actin network.

J X Tang 1, P A Janmey 1, T P Stossel 1, T Ito 1
PMCID: PMC1300193  PMID: 10096915

Abstract

Slow oxidation of sulfhydryls, forming covalently linked actin dimers and higher oligomers, accounts for increases in the shear elasticity of purified actin observed after aging. Disulfide-bonded actin dimers are incorporated into F-actin during polymerization and generate cross-links between actin filaments. The large gel strength of oxidized actin (>100 Pa for 1 mg/ml) in the absence of cross-linking proteins falls to within the theoretically predicted order of magnitude for uncross-linked actin filament networks (1 Pa) with the addition of sufficient concentrations of reducing agents such as 5 mM dithiothreitol or 10 mM beta-mercaptoethanol. As little as 1 gelsolin/1000 actin subunits also lowers the high storage modulus of oxidized actin. The effects of gelsolin may be both to increase filament number as it severs F-actin and to cover the barbed end of an actin filament, which otherwise might cross-link to the side of another filament via an actin dimer. These new findings may explain why previous studies of actin rheology report a wide range of values when purified actin is polymerized without added regulatory proteins.

Full Text

The Full Text of this article is available as a PDF (224.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brotschi E. A., Hartwig J. H., Stossel T. P. The gelation of actin by actin-binding protein. J Biol Chem. 1978 Dec 25;253(24):8988–8993. [PubMed] [Google Scholar]
  2. Cunningham C. C., Gorlin J. B., Kwiatkowski D. J., Hartwig J. H., Janmey P. A., Byers H. R., Stossel T. P. Actin-binding protein requirement for cortical stability and efficient locomotion. Science. 1992 Jan 17;255(5042):325–327. doi: 10.1126/science.1549777. [DOI] [PubMed] [Google Scholar]
  3. Drabikowski W., Lehrer S., Nagy B., Gergely J. Loss of Cu2+-binding to actin upon removal of the C-terminal phenylalanine by carboxypeptidase A. Arch Biochem Biophys. 1977 May;181(1):359–361. doi: 10.1016/0003-9861(77)90515-x. [DOI] [PubMed] [Google Scholar]
  4. Eichinger L., Noegel A. A., Schleicher M. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin. J Cell Biol. 1991 Feb;112(4):665–676. doi: 10.1083/jcb.112.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  6. Glogauer M., Ferrier J. A new method for application of force to cells via ferric oxide beads. Pflugers Arch. 1998 Jan;435(2):320–327. doi: 10.1007/s004240050518. [DOI] [PubMed] [Google Scholar]
  7. Goldmann W. H., Tempel M., Sprenger I., Isenberg G., Ezzell R. M. Viscoelasticity of actin-gelsolin networks in the presence of filamin. Eur J Biochem. 1997 Jun 1;246(2):373–379. doi: 10.1111/j.1432-1033.1997.00373.x. [DOI] [PubMed] [Google Scholar]
  8. Hesterkamp T., Weeds A. G., Mannherz H. G. The actin monomers in the ternary gelsolin: 2 actin complex are in an antiparallel orientation. Eur J Biochem. 1993 Dec 1;218(2):507–513. doi: 10.1111/j.1432-1033.1993.tb18403.x. [DOI] [PubMed] [Google Scholar]
  9. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  10. Ishiwata S. Freezing of actin. Reversible oxidation of a sulfhydryl group and structural change. J Biochem. 1976 Sep;80(3):595–609. doi: 10.1093/oxfordjournals.jbchem.a131315. [DOI] [PubMed] [Google Scholar]
  11. Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
  12. Janmey P. A., Hvidt S., Lamb J., Stossel T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature. 1990 May 3;345(6270):89–92. doi: 10.1038/345089a0. [DOI] [PubMed] [Google Scholar]
  13. Janssen K. P., Eichinger L., Janmey P. A., Noegel A. A., Schliwa M., Witke W., Schleicher M. Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins. Arch Biochem Biophys. 1996 Jan 15;325(2):183–189. doi: 10.1006/abbi.1996.0023. [DOI] [PubMed] [Google Scholar]
  14. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  15. Kurokawa H., Fujii W., Ohmi K., Sakurai T., Nonomura Y. Simple and rapid purification of brevin. Biochem Biophys Res Commun. 1990 Apr 30;168(2):451–457. doi: 10.1016/0006-291x(90)92342-w. [DOI] [PubMed] [Google Scholar]
  16. Käs J., Strey H., Tang J. X., Finger D., Ezzell R., Sackmann E., Janmey P. A. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J. 1996 Feb;70(2):609–625. doi: 10.1016/S0006-3495(96)79630-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lehrer S. S., Nagy B., Gergely J. The binding of Cu 2+ to actin without loss of polymerizability: the involvement of the rapidly reacting -SH group. Arch Biochem Biophys. 1972 May;150(1):164–174. doi: 10.1016/0003-9861(72)90023-9. [DOI] [PubMed] [Google Scholar]
  18. Lo C. M., Glogauer M., Rossi M., Ferrier J. Cell-substrate separation: effect of applied force and temperature. Eur Biophys J. 1998;27(1):9–17. doi: 10.1007/s002490050105. [DOI] [PubMed] [Google Scholar]
  19. Lorenz M., Poole K. J., Popp D., Rosenbaum G., Holmes K. C. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol. 1995 Feb 10;246(1):108–119. doi: 10.1006/jmbi.1994.0070. [DOI] [PubMed] [Google Scholar]
  20. MacKintosh FC, Käs J, Janmey PA. Elasticity of semiflexible biopolymer networks. Phys Rev Lett. 1995 Dec 11;75(24):4425–4428. doi: 10.1103/PhysRevLett.75.4425. [DOI] [PubMed] [Google Scholar]
  21. Millonig R., Salvo H., Aebi U. Probing actin polymerization by intermolecular cross-linking. J Cell Biol. 1988 Mar;106(3):785–796. doi: 10.1083/jcb.106.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mullins R. D., Heuser J. A., Pollard T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6181–6186. doi: 10.1073/pnas.95.11.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mullins R. D., Kelleher J. F., Xu J., Pollard T. D. Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments. Mol Biol Cell. 1998 Apr;9(4):841–852. doi: 10.1091/mbc.9.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  25. Ruddies R., Goldmann W. H., Isenberg G., Sackmann E. The viscoelastic moduli of actin/filamin solutions: a micro-rheologic study. Biochem Soc Trans. 1993 Feb;21(1):37S–37S. doi: 10.1042/bst021037s. [DOI] [PubMed] [Google Scholar]
  26. Ruddies R., Goldmann W. H., Isenberg G., Sackmann E. The viscoelasticity of entangled actin networks: the influence of defects and modulation by talin and vinculin. Eur Biophys J. 1993;22(5):309–321. doi: 10.1007/BF00213554. [DOI] [PubMed] [Google Scholar]
  27. Satcher R. L., Jr, Dewey C. F., Jr Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J. 1996 Jul;71(1):109–118. doi: 10.1016/S0006-3495(96)79206-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Small J. V. Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility. Semin Cell Biol. 1994 Jun;5(3):157–163. doi: 10.1006/scel.1994.1020. [DOI] [PubMed] [Google Scholar]
  29. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  30. Steinmetz M. O., Goldie K. N., Aebi U. A correlative analysis of actin filament assembly, structure, and dynamics. J Cell Biol. 1997 Aug 11;138(3):559–574. doi: 10.1083/jcb.138.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stossel T. P. Contribution of actin to the structure of the cytoplasmic matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):15s–21s. doi: 10.1083/jcb.99.1.15s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  33. Tang J. X., Janmey P. A. The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem. 1996 Apr 12;271(15):8556–8563. doi: 10.1074/jbc.271.15.8556. [DOI] [PubMed] [Google Scholar]
  34. Wachsstock D. H., Schwartz W. H., Pollard T. D. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J. 1993 Jul;65(1):205–214. doi: 10.1016/S0006-3495(93)81059-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xu J., Schwarz W. H., Käs J. A., Stossel T. P., Janmey P. A., Pollard T. D. Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers. Biophys J. 1998 May;74(5):2731–2740. doi: 10.1016/S0006-3495(98)77979-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu J., Wirtz D., Pollard T. D. Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks. J Biol Chem. 1998 Apr 17;273(16):9570–9576. doi: 10.1074/jbc.273.16.9570. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES