Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2238–2248. doi: 10.1016/S0006-3495(99)77380-7

Quenching of chlorophyll fluorescence by triplets in solubilized light-harvesting complex II (LHCII).

R Schödel 1, K D Irrgang 1, J Voigt 1, G Renger 1
PMCID: PMC1300197  PMID: 10096919

Abstract

The quenching of chlorophyll fluorescence by triplets in solubilized trimeric light harvesting complexes was analyzed by comparative pump-probe experiments that monitor with weak 2-ns probe pulses the fluorescence yield and changes of optical density, DeltaOD, induced by 2-ns pump pulses. By using a special array for the measurement of the probe fluorescence (Schödel R., F. Hillman, T. Schrötter, K.-D. Irrgang, J. Voight, and G. Biophys. J. 71:3370-3380) the emission caused by the pump pulses could be drastically reduced so that even at highest pump pulse intensities, IP, no significant interference with the signal due to the probe pulse was observed. The data obtained reveal: a) at a fixed time delay of 50 ns between pump and probe pulse the fluorescence yield of the latter drastically decreased with increasing IP, b) the recovery of the fluorescence yield in the microseconds time domain exhibits kinetics which are dependent on IP, c) DeltaOD at 507 nm induced by the pump pulse and monitored by the probe pulse with a delay of 50 ns (reflecting carotenoid triplets) increases with IP without reaching a saturation level at highest IP values, d) an analogous feature is observed for the bleaching at 675 nm but it becomes significant only at very high IP values, e) the relaxation of DeltaOD at 507 nm occurs via a monophasic kinetics at all IP values whereas DeltaOD at 675 nm measured under the same conditions is characterized by a biphasic kinetics with tau values of about 1 microseconds and 7-9 microseconds. The latter corresponds with the monoexponential decay kinetics of DeltaOD at 507 nm. Based on a Stern-Volmer plot, the time-dependent fluorescence quenching is compared with the relaxation kinetics of triplets. It is shown that the fluorescence data can be consistently described by a quenching due to triplets.

Full Text

The Full Text of this article is available as a PDF (148.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
  2. Breton J., Geacintov N. E. Picosecond fluorescence kinetics and fast energy transfer processes in photosynthetic membranes. Biochim Biophys Acta. 1980 Dec 22;594(1):1–32. doi: 10.1016/0304-4173(80)90011-7. [DOI] [PubMed] [Google Scholar]
  3. Breton J., Geacintov N. E., Swenberg C. E. Quenching of fluorescence by triplet excited states in chloroplasts. Biochim Biophys Acta. 1979 Dec 6;548(3):616–635. doi: 10.1016/0005-2728(79)90069-0. [DOI] [PubMed] [Google Scholar]
  4. Butler W. L. On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3420–3422. doi: 10.1073/pnas.69.11.3420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christen G., Reifarth F., Renger G. On the origin of the '35-mus kinetics' of P680(+.) reduction in photosystem II with an intact water oxidising complex. FEBS Lett. 1998 Jun 5;429(1):49–52. doi: 10.1016/s0014-5793(98)00552-3. [DOI] [PubMed] [Google Scholar]
  6. Connelly J. P., Müller M. G., Bassi R., Croce R., Holzwarth A. R. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry. 1997 Jan 14;36(2):281–287. doi: 10.1021/bi962467l. [DOI] [PubMed] [Google Scholar]
  7. Geacintov N. E., Swenberg C. E., Campillo A. J., Hyer R. C., Shapiro S. L., Winn K. R. A picosecond pulse train study of exciton dynamics in photosynthetic membranes. Biophys J. 1978 Oct;24(1):347–359. doi: 10.1016/S0006-3495(78)85382-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green B. R., Durnford D. G. THE CHLOROPHYLL-CAROTENOID PROTEINS OF OXYGENIC PHOTOSYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):685–714. doi: 10.1146/annurev.arplant.47.1.685. [DOI] [PubMed] [Google Scholar]
  9. Gülen D., Wittmershaus B. P., Knox R. S. Theory of picosecond-laser-induced fluorescence from highly excited complexes with small numbers of chromophores. Biophys J. 1986 Feb;49(2):469–477. doi: 10.1016/S0006-3495(86)83656-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holzwarth A. R. Applications of ultrafast laser spectroscopy for the study of biological systems. Q Rev Biophys. 1989 Aug;22(3):239–326. doi: 10.1017/s0033583500002985. [DOI] [PubMed] [Google Scholar]
  11. Irrgang K. D., Boekema E. J., Vater J., Renger G. Structural determination of the photosystem II core complex from spinach. Eur J Biochem. 1988 Dec 1;178(1):209–217. doi: 10.1111/j.1432-1033.1988.tb14445.x. [DOI] [PubMed] [Google Scholar]
  12. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  13. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  14. Mauzerall D. Multiple excitations in photosynthetic systems. Biophys J. 1976 Jan;16(1):87–91. doi: 10.1016/S0006-3495(76)85665-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nordlund T. M., Knox W. H. Lifetime of fluorescence from light-harvesting chlorophyll a/b proteins. Excitation intensity dependence. Biophys J. 1981 Oct;36(1):193–201. doi: 10.1016/S0006-3495(81)84723-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paillotin G., Geacintov N. E., Breton J. A master equation theory of fluorescence induction, photochemical yield, and singlet-triplet exciton quenching in photosynthetic systems. Biophys J. 1983 Oct;44(1):65–77. doi: 10.1016/S0006-3495(83)84278-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peterman E. J., Dukker F. M., van Grondelle R., van Amerongen H. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J. 1995 Dec;69(6):2670–2678. doi: 10.1016/S0006-3495(95)80138-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schödel R., Hillmann F., Schrötter T., Voigt J., Irrgang K. D., Renger G. Kinetics of excited states of pigment clusters in solubilized light-harvesting complex II: photon density-dependent fluorescence yield and transmittance. Biophys J. 1996 Dec;71(6):3370–3380. doi: 10.1016/S0006-3495(96)79530-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schödel R., Irrgang K. D., Voigt J., Renger G. Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J. 1998 Dec;75(6):3143–3153. doi: 10.1016/S0006-3495(98)77756-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vasil'ev S., Irrgang K. D., Schrötter T., Bergmann A., Eichler H. J., Renger G. Quenching of chlorophyll a fluorescence in the aggregates of LHCII: steady state fluorescence and picosecond relaxation kinetics. Biochemistry. 1997 Jun 17;36(24):7503–7512. doi: 10.1021/bi9625253. [DOI] [PubMed] [Google Scholar]
  21. Zucchelli G., Dainese P., Jennings R. C., Breton J., Garlaschi F. M., Bassi R. Gaussian decomposition of absorption and linear dichroism spectra of outer antenna complexes of photosystem II. Biochemistry. 1994 Aug 2;33(30):8982–8990. doi: 10.1021/bi00196a016. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES