Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):2288–2296. doi: 10.1016/S0006-3495(99)77384-4

Direct sedimentation analysis of interference optical data in analytical ultracentrifugation.

P Schuck 1, B Demeler 1
PMCID: PMC1300201  PMID: 10096923

Abstract

Sedimentation data acquired with the interference optical scanning system of the Optima XL-I analytical ultracentrifuge can exhibit time-invariant noise components, as well as small radial-invariant baseline offsets, both superimposed onto the radial fringe shift data resulting from the macromolecular solute distribution. A well-established method for the interpretation of such ultracentrifugation data is based on the analysis of time-differences of the measured fringe profiles, such as employed in the g(s*) method. We demonstrate how the technique of separation of linear and nonlinear parameters can be used in the modeling of interference data by unraveling the time-invariant and radial-invariant noise components. This allows the direct application of the recently developed approximate analytical and numerical solutions of the Lamm equation to the analysis of interference optical fringe profiles. The presented method is statistically advantageous since it does not require the differentiation of the data and the model functions. The method is demonstrated on experimental data and compared with the results of a g(s*) analysis. It is also demonstrated that the calculation of time-invariant noise components can be useful in the analysis of absorbance optical data. They can be extracted from data acquired during the approach to equilibrium, and can be used to increase the reliability of the results obtained from a sedimentation equilibrium analysis.

Full Text

The Full Text of this article is available as a PDF (192.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  2. Behlke J., Ristau O. Molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles. Biophys J. 1997 Jan;72(1):428–434. doi: 10.1016/S0006-3495(97)78683-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloomfield V., Dalton W. O., Van Holde K. E. Frictional coefficients of multisubunit structures. I. Theory. Biopolymers. 1967 Feb;5(2):135–148. doi: 10.1002/bip.1967.360050202. [DOI] [PubMed] [Google Scholar]
  4. Byron O. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Biophys J. 1997 Jan;72(1):408–415. doi: 10.1016/S0006-3495(97)78681-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cann J. R., Kegeles G. Theory of sedimentation for kinetically controlled dimerization reactions. Biochemistry. 1974 Apr 23;13(9):1868–1874. doi: 10.1021/bi00706a015. [DOI] [PubMed] [Google Scholar]
  6. Claverie J. M. Sedimentation of generalized systems of interacting particles. III. Concentration-dependent sedimentation and extension to other transport methods. Biopolymers. 1976 May;15(5):843–857. doi: 10.1002/bip.1976.360150504. [DOI] [PubMed] [Google Scholar]
  7. Cox D. J. Computer simulation of sedimentation in the ultracentrifuge. IV. Velocity sedimentation of self-associating solutes. Arch Biochem Biophys. 1969 Jan;129(1):106–123. doi: 10.1016/0003-9861(69)90157-x. [DOI] [PubMed] [Google Scholar]
  8. Demeler B., Saber H. Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation. Biophys J. 1998 Jan;74(1):444–454. doi: 10.1016/S0006-3495(98)77802-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Demeler B., Saber H., Hansen J. C. Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J. 1997 Jan;72(1):397–407. doi: 10.1016/S0006-3495(97)78680-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gabriel O., Gersten D. M. Staining for enzymatic activity after gel electrophoresis, I. Anal Biochem. 1992 May 15;203(1):1–21. doi: 10.1016/0003-2697(92)90036-7. [DOI] [PubMed] [Google Scholar]
  11. Gilbert L. M., Gilbert G. A. Sedimentation velocity measurement of protein association. Methods Enzymol. 1973;27:273–296. doi: 10.1016/s0076-6879(73)27014-3. [DOI] [PubMed] [Google Scholar]
  12. Holladay L. A. An approximate solution to the Lamm equation. Biophys Chem. 1979 Sep;10(2):187–190. doi: 10.1016/0301-4622(79)85039-5. [DOI] [PubMed] [Google Scholar]
  13. Laue T. M. Advances in sedimentation velocity analysis. Biophys J. 1997 Jan;72(1):395–396. doi: 10.1016/S0006-3495(97)78679-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laue T. M., Domanik R. A., Yphantis D. A. Rapid precision interferometry for the analytical ultracentrifuge. I. A laser controller based on a phase-lock-loop circuit. Anal Biochem. 1983 May;131(1):220–231. doi: 10.1016/0003-2697(83)90158-6. [DOI] [PubMed] [Google Scholar]
  15. Laue T. M., Yphantis D. A., Rhodes D. G. Rapid precision interferometry for the analytical ultracentrifuge. III. Determination of period of rotation, frequency of rotation, and elapsed time. Anal Biochem. 1984 Nov 15;143(1):103–112. doi: 10.1016/0003-2697(84)90563-3. [DOI] [PubMed] [Google Scholar]
  16. Philo J. S. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J. 1997 Jan;72(1):435–444. doi: 10.1016/S0006-3495(97)78684-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schuck P., MacPhee C. E., Howlett G. J. Determination of sedimentation coefficients for small peptides. Biophys J. 1998 Jan;74(1):466–474. doi: 10.1016/S0006-3495(98)77804-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schuck P. Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J. 1998 Sep;75(3):1503–1512. doi: 10.1016/S0006-3495(98)74069-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schuster T. M., Toedt J. M. New revolutions in the evolution of analytical ultracentrifugation. Curr Opin Struct Biol. 1996 Oct;6(5):650–658. doi: 10.1016/s0959-440x(96)80032-7. [DOI] [PubMed] [Google Scholar]
  20. Stafford W. F., 3rd Boundary analysis in sedimentation velocity experiments. Methods Enzymol. 1994;240:478–501. doi: 10.1016/s0076-6879(94)40061-x. [DOI] [PubMed] [Google Scholar]
  21. Stafford WF. Sedimentation velocity spins a new weave for an old fabric. Curr Opin Biotechnol. 1997 Feb 1;8(1):14–24. doi: 10.1016/s0958-1669(97)80152-8. [DOI] [PubMed] [Google Scholar]
  22. Yphantis D. A., Laue T. M., Anderson I. Rapid precision interferometry for the analytical ultracentrifuge. II. A laser controller based on a rate-multiplying circuit. Anal Biochem. 1984 Nov 15;143(1):95–102. doi: 10.1016/0003-2697(84)90562-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES