Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2346–2350. doi: 10.1016/S0006-3495(99)77391-1

Structural consequences of anesthetic and nonimmobilizer interaction with gramicidin A channels.

P Tang 1, V Simplaceanu 1, Y Xu 1
PMCID: PMC1300208  PMID: 10233053

Abstract

Although interactions of general anesthetics with soluble proteins have been studied, the specific interactions with membrane bound-proteins that characterize general anesthesia are largely unknown. The structural modulations of anesthetic interactions with synaptic ion channels have not been elucidated. Using gramicidin A as a simplified model for transmembrane ion channels, we have recently demonstrated that a pair of structurally similar volatile anesthetic and nonimmobilizer, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), respectively, have distinctly different effects on the channel function. Using high-resolution NMR structural analysis, we show here that neither F3 nor F6 at pharmacologically relevant concentrations can significantly affect the secondary structure of the gramicidin A channel. Although both the anesthetic F3 and the nonimmobilizer F6 can perturb residues at the middle section of the channel deep inside the hydrophobic region in the sodium dodecyl sulfate micelles, only F3, but not F6, can significantly alter the chemical shifts of the tryptophan indole N-H protons near the channel entrances. The results are consistent with the notion that anesthetics cause functional change of the channel by interacting with the amphipathic domains at the peptide-lipid-water interface.

Full Text

The Full Text of this article is available as a PDF (163.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  2. Cross T. A. Solid-state nuclear magnetic resonance characterization of gramicidin channel structure. Methods Enzymol. 1997;289:672–696. doi: 10.1016/s0076-6879(97)89070-2. [DOI] [PubMed] [Google Scholar]
  3. Eckenhoff R. G., Johansson J. S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997 Dec;49(4):343–367. [PubMed] [Google Scholar]
  4. Forman S. A., Miller K. W., Yellen G. A discrete site for general anesthetics on a postsynaptic receptor. Mol Pharmacol. 1995 Oct;48(4):574–581. [PubMed] [Google Scholar]
  5. Franks N. P., Lieb W. R. Inhibitory synapses. Anaesthetics set their sites on ion channels. Nature. 1997 Sep 25;389(6649):334–335. doi: 10.1038/38614. [DOI] [PubMed] [Google Scholar]
  6. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  7. Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
  8. Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
  9. Kendig J. J., Kodde A., Gibbs L. M., Ionescu P., Eger E. I., 2nd Correlates of anesthetic properties in isolated spinal cord: cyclobutanes. Eur J Pharmacol. 1994 Nov 3;264(3):427–436. doi: 10.1016/0014-2999(94)00499-4. [DOI] [PubMed] [Google Scholar]
  10. Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
  11. Killian J. A., Trouard T. P., Greathouse D. V., Chupin V., Lindblom G. A general method for the preparation of mixed micelles of hydrophobic peptides and sodium dodecyl sulphate. FEBS Lett. 1994 Jul 11;348(2):161–165. doi: 10.1016/0014-5793(94)00594-x. [DOI] [PubMed] [Google Scholar]
  12. Lomize A. L., Orekhov V. Iu, Arsen'ev A. S. Utochnenie prostranstvennoi struktury ionnogo kanala gramitsidina A. Bioorg Khim. 1992 Feb;18(2):182–200. [PubMed] [Google Scholar]
  13. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  14. Mobashery N., Nielsen C., Andersen O. S. The conformational preference of gramicidin channels is a function of lipid bilayer thickness. FEBS Lett. 1997 Jul 21;412(1):15–20. doi: 10.1016/s0014-5793(97)00709-6. [DOI] [PubMed] [Google Scholar]
  15. North C., Cafiso D. S. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J. 1997 Apr;72(4):1754–1761. doi: 10.1016/S0006-3495(97)78821-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tang P., Yan B., Xu Y. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study. Biophys J. 1997 Apr;72(4):1676–1682. doi: 10.1016/S0006-3495(97)78813-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weinstein S., Wallace B. A., Blout E. R., Morrow J. S., Veatch W. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4230–4234. doi: 10.1073/pnas.76.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Woolf T. B., Roux B. The binding site of sodium in the gramicidin A channel: comparison of molecular dynamics with solid-state NMR data. Biophys J. 1997 May;72(5):1930–1945. doi: 10.1016/S0006-3495(97)78839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xu Y., Tang P. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. Biochim Biophys Acta. 1997 Jan 14;1323(1):154–162. doi: 10.1016/s0005-2736(96)00184-8. [DOI] [PubMed] [Google Scholar]
  20. Xu Y., Tang P., Liachenko S. Unifying characteristics of sites of anesthetic action revealed by combined use of anesthetics and non-anesthetics. Toxicol Lett. 1998 Nov 23;100-101:347–352. doi: 10.1016/s0378-4274(98)00205-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES