Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2421–2431. doi: 10.1016/s0006-3495(99)77397-2

Quantifying aggregation of IgE-FcepsilonRI by multivalent antigen.

W S Hlavacek 1, A S Perelson 1, B Sulzer 1, J Bold 1, J Paar 1, W Gorman 1, R G Posner 1
PMCID: PMC1300214  PMID: 10233059

Abstract

Aggregation of cell surface receptors by multivalent ligand can trigger a variety of cellular responses. A well-studied receptor that responds to aggregation is the high affinity receptor for IgE (FcepsilonRI), which is responsible for initiating allergic reactions. To quantify antigen-induced aggregation of IgE-FcepsilonRI complexes, we have developed a method based on multiparameter flow cytometry to monitor both occupancy of surface IgE combining sites and association of antigen with the cell surface. The number of bound IgE combining sites in excess of the number of bound antigens, the number of bridges between receptors, provides a quantitative measure of IgE-FcepsilonRI aggregation. We demonstrate our method by using it to study the equilibrium binding of a haptenated fluorescent protein, 2,4-dinitrophenol-coupled B-phycoerythrin (DNP25-PE), to fluorescein isothiocyanate-labeled anti-DNP IgE on the surface of rat basophilic leukemia cells. The results, which we analyze with the aid of a mathematical model, indicate how IgE-FcepsilonRI aggregation depends on the total concentrations of DNP25-PE and surface IgE. As expected, we find that maximal aggregation occurs at an optimal antigen concentration. We also find that aggregation varies qualitatively with the total concentration of surface IgE as predicted by an earlier theoretical analysis.

Full Text

The Full Text of this article is available as a PDF (114.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 1981 Apr;11(4):317–323. doi: 10.1002/eji.1830110410. [DOI] [PubMed] [Google Scholar]
  2. Becker K. E., Ishizaka T., Metzger H., Ishizaka K., Grimley P. M. Surface IgE on human basophils during histamine release. J Exp Med. 1973 Aug 1;138(2):394–409. doi: 10.1084/jem.138.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cambier J. C., Ransom J. T. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu Rev Immunol. 1987;5:175–199. doi: 10.1146/annurev.iy.05.040187.001135. [DOI] [PubMed] [Google Scholar]
  4. Dembo M., Goldstein B. A model of cell activation and desensitization by surface immunoglobin: the case of histamine release from human basophils. Cell. 1980 Nov;22(1 Pt 1):59–67. doi: 10.1016/0092-8674(80)90154-3. [DOI] [PubMed] [Google Scholar]
  5. Dembo M., Goldstein B., Sobotka A. K., Lichtenstein L. M. Histamine release due to bivalent penicilloyl haptens the relation of activation and desensitization of basophils to dynamic aspects of ligand binding to cell surface antibody. J Immunol. 1979 Feb;122(2):518–528. [PubMed] [Google Scholar]
  6. Dembo M., Goldstein B., Sobotka A. K., Lichtenstein L. M. Histamine release due to bivalent penicilloyl haptens: control by the basophil plasma membrane. J Immunol. 1978 Jul;121(1):354–358. [PubMed] [Google Scholar]
  7. Dembo M., Goldstein B. Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils. J Immunol. 1978 Jul;121(1):345–353. [PubMed] [Google Scholar]
  8. Dintzis H. M., Dintzis R. Z., Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3671–3675. doi: 10.1073/pnas.73.10.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dintzis R. Z., Middleton M. H., Dintzis H. M. Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol. 1983 Nov;131(5):2196–2203. [PubMed] [Google Scholar]
  10. Eiseman E., Bolen J. B. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature. 1992 Jan 2;355(6355):78–80. doi: 10.1038/355078a0. [DOI] [PubMed] [Google Scholar]
  11. El-Hillal O., Kurosaki T., Yamamura H., Kinet J. P., Scharenberg A. M. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1919–1924. doi: 10.1073/pnas.94.5.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Erickson J., Goldstein B., Holowka D., Baird B. The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors. Biophys J. 1987 Oct;52(4):657–662. doi: 10.1016/S0006-3495(87)83258-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Erickson J., Kane P., Goldstein B., Holowka D., Baird B. Cross-linking of IgE-receptor complexes at the cell surface: a fluorescence method for studying the binding of monovalent and bivalent haptens to IgE. Mol Immunol. 1986 Jul;23(7):769–781. doi: 10.1016/0161-5890(86)90089-1. [DOI] [PubMed] [Google Scholar]
  14. Fewtrell C., Metzger H. Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells. J Immunol. 1980 Aug;125(2):701–710. [PubMed] [Google Scholar]
  15. Ficner R., Huber R. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur J Biochem. 1993 Nov 15;218(1):103–106. doi: 10.1111/j.1432-1033.1993.tb18356.x. [DOI] [PubMed] [Google Scholar]
  16. Ficner R., Lobeck K., Schmidt G., Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol. 1992 Dec 5;228(3):935–950. doi: 10.1016/0022-2836(92)90876-l. [DOI] [PubMed] [Google Scholar]
  17. Fry M. J., Panayotou G., Booker G. W., Waterfield M. D. New insights into protein-tyrosine kinase receptor signaling complexes. Protein Sci. 1993 Nov;2(11):1785–1797. doi: 10.1002/pro.5560021102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heldin C. H., Ernlund A., Rorsman C., Rönnstrand L. Dimerization of B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation. J Biol Chem. 1989 May 25;264(15):8905–8912. [PubMed] [Google Scholar]
  19. Holowka D., Baird B. Antigen-mediated IGE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu Rev Biophys Biomol Struct. 1996;25:79–112. doi: 10.1146/annurev.bb.25.060196.000455. [DOI] [PubMed] [Google Scholar]
  20. Holowka D., Metzger H. Further characterization of the beta-component of the receptor for immunoglobulin E. Mol Immunol. 1982 Feb;19(2):219–227. doi: 10.1016/0161-5890(82)90334-0. [DOI] [PubMed] [Google Scholar]
  21. Kane P., Erickson J., Fewtrell C., Baird B., Holowka D. Cross-linking of IgE-receptor complexes at the cell surface: synthesis and characterization of a long bivalent hapten that is capable of triggering mast cells and rat basophilic leukemia cells. Mol Immunol. 1986 Jul;23(7):783–790. doi: 10.1016/0161-5890(86)90090-8. [DOI] [PubMed] [Google Scholar]
  22. Kaye J., Janeway C. A., Jr The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T cell clone blocks activation by either allogeneic Ia or antigen and self-Ia. J Exp Med. 1984 May 1;159(5):1397–1412. doi: 10.1084/jem.159.5.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keegan A. D., Paul W. E. Multichain immune recognition receptors: similarities in structure and signaling pathways. Immunol Today. 1992 Feb;13(2):63–68. doi: 10.1016/0167-5699(92)90136-U. [DOI] [PubMed] [Google Scholar]
  25. Kersh E. N., Shaw A. S., Allen P. M. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science. 1998 Jul 24;281(5376):572–575. doi: 10.1126/science.281.5376.572. [DOI] [PubMed] [Google Scholar]
  26. Kulczycki A., Jr, Metzger H. The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction. J Exp Med. 1974 Dec 1;140(6):1676–1695. doi: 10.1084/jem.140.6.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu F. T., Bohn J. W., Ferry E. L., Yamamoto H., Molinaro C. A., Sherman L. A., Klinman N. R., Katz D. H. Monoclonal dinitrophenyl-specific murine IgE antibody: preparation, isolation, and characterization. J Immunol. 1980 Jun;124(6):2728–2737. [PubMed] [Google Scholar]
  28. Lyons D. S., Lieberman S. A., Hampl J., Boniface J. J., Chien Y., Berg L. J., Davis M. M. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity. 1996 Jul;5(1):53–61. doi: 10.1016/s1074-7613(00)80309-x. [DOI] [PubMed] [Google Scholar]
  29. MacGlashan D. W., Jr, Dembo M., Goldstein B. Test of a theory relating to the cross-linking of IgE antibody on the surface of human basophils. J Immunol. 1985 Dec;135(6):4129–4134. [PubMed] [Google Scholar]
  30. MacGlashan D., Jr, Lichtenstein L. M. Studies of antigen binding on human basophils. I. Antigen binding and functional consequences. J Immunol. 1983 May;130(5):2330–2336. [PubMed] [Google Scholar]
  31. Madrenas J., Wange R. L., Wang J. L., Isakov N., Samelson L. E., Germain R. N. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science. 1995 Jan 27;267(5197):515–518. doi: 10.1126/science.7824949. [DOI] [PubMed] [Google Scholar]
  32. Menon A. K., Holowka D., Baird B. Small oligomers of immunoglobulin E (IgE) cause large-scale clustering of IgE receptors on the surface of rat basophilic leukemia cells. J Cell Biol. 1984 Feb;98(2):577–583. doi: 10.1083/jcb.98.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Metzger H. Transmembrane signaling: the joy of aggregation. J Immunol. 1992 Sep 1;149(5):1477–1487. [PubMed] [Google Scholar]
  34. Myszka D. G., He X., Dembo M., Morton T. A., Goldstein B. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys J. 1998 Aug;75(2):583–594. doi: 10.1016/S0006-3495(98)77549-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  36. Pazin M. J., Williams L. T. Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem Sci. 1992 Oct;17(10):374–378. doi: 10.1016/0968-0004(92)90003-r. [DOI] [PubMed] [Google Scholar]
  37. Poljak R. J., Amzel L. M., Avey H. P., Chen B. L., Phizackerley R. P., Saul F. Three-dimensional structure of the Fab' fragment of a human immunoglobulin at 2,8-A resolution. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3305–3310. doi: 10.1073/pnas.70.12.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Posner R. G., Dembo M. Binding of bivalent ligand to cell surface IgE: can one detect ring formation? Mol Immunol. 1994 Dec;31(18):1439–1445. doi: 10.1016/0161-5890(94)90160-0. [DOI] [PubMed] [Google Scholar]
  39. Posner R. G., Erickson J. W., Holowka D., Baird B., Goldstein B. Dissociation kinetics of bivalent ligand-immunoglobulin E aggregates in solution. Biochemistry. 1991 Mar 5;30(9):2348–2356. doi: 10.1021/bi00223a008. [DOI] [PubMed] [Google Scholar]
  40. Posner R. G., Subramanian K., Goldstein B., Thomas J., Feder T., Holowka D., Baird B. Simultaneous cross-linking by two nontriggering bivalent ligands causes synergistic signaling of IgE Fc epsilon RI complexes. J Immunol. 1995 Oct 1;155(7):3601–3609. [PubMed] [Google Scholar]
  41. Posner R. G., Wofsy C., Goldstein B. The kinetics of bivalent ligand-bivalent receptor aggregation: ring formation and the breakdown of the equivalent site approximation. Math Biosci. 1995 Apr;126(2):171–190. doi: 10.1016/0025-5564(94)00045-2. [DOI] [PubMed] [Google Scholar]
  42. Schreiber A. B., Libermann T. A., Lax I., Yarden Y., Schlessinger J. Biological role of epidermal growth factor-receptor clustering. Investigation with monoclonal anti-receptor antibodies. J Biol Chem. 1983 Jan 25;258(2):846–853. [PubMed] [Google Scholar]
  43. Schweitzer-Stenner R., Licht A., Lüscher I., Pecht I. Oligomerization and ring closure of immunoglobulin E class antibodies by divalent haptens. Biochemistry. 1987 Jun 16;26(12):3602–3612. doi: 10.1021/bi00386a053. [DOI] [PubMed] [Google Scholar]
  44. Seagrave J. C., Deanin G. G., Martin J. C., Davis B. H., Oliver J. M. DNP-phycobiliproteins, fluorescent antigens to study dynamic properties of antigen-IgE-receptor complexes on RBL-2H3 rat mast cells. Cytometry. 1987 May;8(3):287–295. doi: 10.1002/cyto.990080309. [DOI] [PubMed] [Google Scholar]
  45. Seagrave J., Oliver J. M. Antigen-dependent transition of IgE to a detergent-insoluble form is associated with reduced IgE receptor-dependent secretion from RBL-2H3 mast cells. J Cell Physiol. 1990 Jul;144(1):128–136. doi: 10.1002/jcp.1041440117. [DOI] [PubMed] [Google Scholar]
  46. Segal D. M., Taurog J. D., Metzger H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2993–2997. doi: 10.1073/pnas.74.7.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sloan-Lancaster J., Shaw A. S., Rothbard J. B., Allen P. M. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell. 1994 Dec 2;79(5):913–922. doi: 10.1016/0092-8674(94)90080-9. [DOI] [PubMed] [Google Scholar]
  48. Sterk A. R., Ishizaka T. Binding properties of IgE receptors on normal mouse mast cells. J Immunol. 1982 Feb;128(2):838–843. [PubMed] [Google Scholar]
  49. Sulzer B., Perelson A. S. Equilibrium binding of multivalent ligands to cells: effects of cell and receptor density. Math Biosci. 1996 Jul 15;135(2):147–185. doi: 10.1016/0025-5564(96)00022-3. [DOI] [PubMed] [Google Scholar]
  50. Torigoe C., Inman J. K., Metzger H. An unusual mechanism for ligand antagonism. Science. 1998 Jul 24;281(5376):568–572. doi: 10.1126/science.281.5376.568. [DOI] [PubMed] [Google Scholar]
  51. Wofsy C., Goldstein B. The effect of co-operativity on the equilibrium binding of symmetric bivalent ligands to antibodies: theoretical results with application to histamine release from basophils. Mol Immunol. 1987 Feb;24(2):151–161. doi: 10.1016/0161-5890(87)90087-3. [DOI] [PubMed] [Google Scholar]
  52. Wofsy C., Torigoe C., Kent U. M., Metzger H., Goldstein B. Exploiting the difference between intrinsic and extrinsic kinases: implications for regulation of signaling by immunoreceptors. J Immunol. 1997 Dec 15;159(12):5984–5992. [PubMed] [Google Scholar]
  53. Woodard S. L., Aldo-Benson M., Roess D. A., Barisas B. G. Flow cytometric analysis of T-independent antigen binding to dinitrophenyl-specific cells. J Immunol. 1995 Jul 1;155(1):163–171. [PubMed] [Google Scholar]
  54. Xu K., Goldstein B., Holowka D., Baird B. Kinetics of multivalent antigen DNP-BSA binding to IgE-Fc epsilon RI in relationship to the stimulated tyrosine phosphorylation of Fc epsilon RI. J Immunol. 1998 Apr 1;160(7):3225–3235. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES