Abstract
An interactive program is described for calculating the second virial coefficient contribution to the thermodynamic nonideality of solutions of rigid macromolecules based on their triaxial dimensions. The FORTRAN-77 program, available in precompiled form for the PC, is based on theory for the covolume of triaxial ellipsoid particles [Rallison, J. M., and S.E Harding. (1985). J. Colloid Interface Sci. 103:284-289]. This covolume has the potential to provide a magnitude for the second virial coefficient of macromolecules bearing no net charge. Allowance for a charge-charge contribution is made via an expression based on Debye-Hückel theory and uniform distribution of the net charge over the surface of a sphere with dimensions governed by the Stokes radius of the macromolecule. Ovalbumin, ribonuclease A, and hemoglobin are used as model systems to illustrate application of the COVOL routine.
Full Text
The Full Text of this article is available as a PDF (195.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baghurst P. A., Nichol L. W., Ogston A. G., Winzor D. J. Quantitative interpretation of concentration-dependent migration in gel chromatography of reversibly polymerizing solutes. Biochem J. 1975 Jun;147(3):575–583. doi: 10.1042/bj1470575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg O. G. The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Biopolymers. 1990;30(11-12):1027–1037. doi: 10.1002/bip.360301104. [DOI] [PubMed] [Google Scholar]
- Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
- García de la Torre J., Harding S. E., Carrasco B. Calculation of NMR relaxation, covolume, and scattering-related properties of bead models using the SOLPRO computer program. Eur Biophys J. 1999;28(2):119–132. doi: 10.1007/s002490050191. [DOI] [PubMed] [Google Scholar]
- Guttman H. J., Anderson C. F., Record M. T., Jr Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo. Biophys J. 1995 Mar;68(3):835–846. doi: 10.1016/S0006-3495(95)80260-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen M. P., Wills P. R., Winzor D. J. Thermodynamic analysis of the effects of small inert cosolutes in the ultracentrifugation of noninteracting proteins. Biochemistry. 1996 Oct 8;35(40):13173–13179. doi: 10.1021/bi960939q. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
- Ross P. D., Minton A. P. The effect of non-aggregating proteins upon the gelation of sickle cell hemoglobin: model calculations and data analysis. Biochem Biophys Res Commun. 1979 Jun 27;88(4):1308–1314. doi: 10.1016/0006-291x(79)91123-9. [DOI] [PubMed] [Google Scholar]
- Shearwin K. E., Winzor D. J. Thermodynamic nonideality in macromolecular solutions. Evaluation of parameters for the prediction of covolume effects. Eur J Biochem. 1990 Jul 5;190(3):523–529. doi: 10.1111/j.1432-1033.1990.tb15605.x. [DOI] [PubMed] [Google Scholar]
- Stein P. E., Leslie A. G., Finch J. T., Carrell R. W. Crystal structure of uncleaved ovalbumin at 1.95 A resolution. J Mol Biol. 1991 Oct 5;221(3):941–959. doi: 10.1016/0022-2836(91)80185-w. [DOI] [PubMed] [Google Scholar]
- Wills P. R., Nichol L. W., Siezen R. J. The indefinite self-association of lysozyme: consideration of composition-dependent activity coefficients. Biophys Chem. 1980 Feb;11(1):71–82. doi: 10.1016/0301-4622(80)85009-5. [DOI] [PubMed] [Google Scholar]
- Zhou X. Z. Calculation of translational friction and intrinsic viscosity. II. Application to globular proteins. Biophys J. 1995 Dec;69(6):2298–2303. doi: 10.1016/S0006-3495(95)80100-1. [DOI] [PMC free article] [PubMed] [Google Scholar]