Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2448–2459. doi: 10.1016/S0006-3495(99)77400-X

A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.

R G Efremov 1, D E Nolde 1, G Vergoten 1, A S Arseniev 1
PMCID: PMC1300217  PMID: 10233062

Abstract

We describe an efficient solvation model for proteins. In this model atomic solvation parameters imitating the hydrocarbon core of a membrane, water, and weak polar solvent (octanol) were developed. An optimal number of solvation parameters was chosen based on analysis of atomic hydrophobicities and fitting experimental free energies of gas-cyclohexane, gas-water, and octanol-water transfer for amino acids. The solvation energy term incorporated into the ECEPP/2 potential energy function was tested in Monte Carlo simulations of a number of small peptides with known energies of bilayer-water and octanol-water transfer. The calculated properties were shown to agree reasonably well with the experimental data. Furthermore, the solvation model was used to assess membrane-promoting alpha-helix formation. To accomplish this, all-atom models of 20-residue homopolypeptides-poly-Leu, poly-Val, poly-Ile, and poly-Gly in initial random coil conformation-were subjected to nonrestrained Monte Carlo conformational search in vacuo and with the solvation terms mimicking the water and hydrophobic parts of the bilayer. All the peptides demonstrated their largest helix-forming tendencies in a nonpolar environment, where the lowest-energy conformers of poly-Leu, Val, Ile revealed 100, 95, and 80% of alpha-helical content, respectively. Energetic and conformational properties of Gly in all environments were shown to be different from those observed for residues with hydrophobic side chains. Applications of the solvation model to simulations of peptides and proteins in the presence of membrane, along with limitations of the approach, are discussed.

Full Text

The Full Text of this article is available as a PDF (188.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. D., Engelman D. M., Brünger A. T. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. Proteins. 1996 Nov;26(3):257–261. doi: 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  2. Baumgärtner A. Insertion and hairpin formation of membrane proteins: a Monte Carlo study. Biophys J. 1996 Sep;71(3):1248–1255. doi: 10.1016/S0006-3495(96)79324-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Tal N., Ben-Shaul A., Nicholls A., Honig B. Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophys J. 1996 Apr;70(4):1803–1812. doi: 10.1016/S0006-3495(96)79744-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  5. Chou K. C., Carlacci L., Maggiora G. M., Parodi L. A., Schulz M. W. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin. Protein Sci. 1992 Jun;1(6):810–827. doi: 10.1002/pro.5560010613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cummings M. D., Hart T. N., Read R. J. Atomic solvation parameters in the analysis of protein-protein docking results. Protein Sci. 1995 Oct;4(10):2087–2099. doi: 10.1002/pro.5560041014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deber C. M., Goto N. K. Folding proteins into membranes. Nat Struct Biol. 1996 Oct;3(10):815–818. doi: 10.1038/nsb1096-815. [DOI] [PubMed] [Google Scholar]
  8. Deber C. M., Li S. C. Peptides in membranes: helicity and hydrophobicity. Biopolymers. 1995;37(5):295–318. doi: 10.1002/bip.360370503. [DOI] [PubMed] [Google Scholar]
  9. Ducarme P., Rahman M., Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins. 1998 Mar 1;30(4):357–371. [PubMed] [Google Scholar]
  10. Edholm O., Jähnig F. The structure of a membrane-spanning polypeptide studied by molecular dynamics. Biophys Chem. 1988 Jul 15;30(3):279–292. doi: 10.1016/0301-4622(88)85023-3. [DOI] [PubMed] [Google Scholar]
  11. Efremov R. G., Alix A. J. Environmental characteristics of residues in proteins: three-dimensional molecular hydrophobicity potential approach. J Biomol Struct Dyn. 1993 Dec;11(3):483–507. doi: 10.1080/07391102.1993.10508011. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  13. Fraternali F., Van Gunsteren W. F. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution. J Mol Biol. 1996 Mar 15;256(5):939–948. doi: 10.1006/jmbi.1996.0139. [DOI] [PubMed] [Google Scholar]
  14. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  15. Juffer A. H., Eisenhaber F., Hubbard S. J., Walther D., Argos P. Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding. Protein Sci. 1995 Dec;4(12):2499–2509. doi: 10.1002/pro.5560041206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jähnig F., Edholm O. Modeling of the structure of bacteriorhodopsin. A molecular dynamics study. J Mol Biol. 1992 Aug 5;226(3):837–850. doi: 10.1016/0022-2836(92)90635-w. [DOI] [PubMed] [Google Scholar]
  17. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  18. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  19. Kovacs H., Mark A. E., Johansson J., van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J Mol Biol. 1995 Apr 7;247(4):808–822. doi: 10.1016/s0022-2836(05)80156-1. [DOI] [PubMed] [Google Scholar]
  20. Liu L. P., Li S. C., Goto N. K., Deber C. M. Threshold hydrophobicity dictates helical conformations of peptides in membrane environments. Biopolymers. 1996 Sep;39(3):465–470. doi: 10.1002/(sici)1097-0282(199609)39:3<465::aid-bip17>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  21. Milik M., Skolnick J. A Monte Carlo model of fd and Pf1 coat proteins in lipid membranes. Biophys J. 1995 Oct;69(4):1382–1386. doi: 10.1016/S0006-3495(95)80007-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
  23. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  24. Ooi T., Oobatake M., Némethy G., Scheraga H. A. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci U S A. 1987 May;84(10):3086–3090. doi: 10.1073/pnas.84.10.3086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Padmanabhan S., Marqusee S., Ridgeway T., Laue T. M., Baldwin R. L. Relative helix-forming tendencies of nonpolar amino acids. Nature. 1990 Mar 15;344(6263):268–270. doi: 10.1038/344268a0. [DOI] [PubMed] [Google Scholar]
  26. Parker M. W., Postma J. P., Pattus F., Tucker A. D., Tsernoglou D. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol. 1992 Apr 5;224(3):639–657. doi: 10.1016/0022-2836(92)90550-4. [DOI] [PubMed] [Google Scholar]
  27. Peters G. H., van Aalten D. M., Edholm O., Toxvaerd S., Bywater R. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. Biophys J. 1996 Nov;71(5):2245–2255. doi: 10.1016/S0006-3495(96)79428-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roux B., Karplus M. Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct. 1994;23:731–761. doi: 10.1146/annurev.bb.23.060194.003503. [DOI] [PubMed] [Google Scholar]
  29. Sharp K. A., Nicholls A., Friedman R., Honig B. Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry. 1991 Oct 8;30(40):9686–9697. doi: 10.1021/bi00104a017. [DOI] [PubMed] [Google Scholar]
  30. Thorgeirsson T. E., Russell C. J., King D. S., Shin Y. K. Direct determination of the membrane affinities of individual amino acids. Biochemistry. 1996 Feb 13;35(6):1803–1809. doi: 10.1021/bi952300c. [DOI] [PubMed] [Google Scholar]
  31. Tirado-Rives J., Jorgensen W. L. Molecular dynamics simulations of the unfolding of an alpha-helical analogue of ribonuclease A S-peptide in water. Biochemistry. 1991 Apr 23;30(16):3864–3871. doi: 10.1021/bi00230a009. [DOI] [PubMed] [Google Scholar]
  32. Van Buuren A. R., Berendsen H. J. Molecular dynamics simulation of the stability of a 22-residue alpha-helix in water and 30% trifluoroethanol. Biopolymers. 1993 Aug;33(8):1159–1166. doi: 10.1002/bip.360330802. [DOI] [PubMed] [Google Scholar]
  33. Walker J. E., Saraste M. Membrane proteins. Membrane protein structure. Curr Opin Struct Biol. 1996 Aug;6(4):457–459. doi: 10.1016/s0959-440x(96)80109-6. [DOI] [PubMed] [Google Scholar]
  34. Wang J., Pullman A. Do helices in membranes prefer to form bundles or stay dispersed in the lipid phase? Biochim Biophys Acta. 1991 Dec 9;1070(2):493–496. doi: 10.1016/0005-2736(91)90091-l. [DOI] [PubMed] [Google Scholar]
  35. Wesson L., Eisenberg D. Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Sci. 1992 Feb;1(2):227–235. doi: 10.1002/pro.5560010204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
  37. Xing J., Scott H. L. Monte Carlo studies of lipid chains and gramicidin A in a model membrane. Biochem Biophys Res Commun. 1989 Nov 30;165(1):1–6. doi: 10.1016/0006-291x(89)91025-5. [DOI] [PubMed] [Google Scholar]
  38. von Freyberg B., Richmond T. J., Braun W. Surface area included in energy refinement of proteins. A comparative study on atomic solvation parameters. J Mol Biol. 1993 Sep 20;233(2):275–292. doi: 10.1006/jmbi.1993.1506. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES