Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 May;76(5):2587–2599. doi: 10.1016/S0006-3495(99)77411-4

A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban.

M Li 1, L G Reddy 1, R Bennett 1, N D Silva Jr 1, L R Jones 1, D D Thomas 1
PMCID: PMC1300228  PMID: 10233073

Abstract

We have developed a method using fluorescence energy transfer (FET) to analyze protein oligomeric structure. Two populations of a protein are labeled with fluorescent donor and acceptor, respectively, then mixed at a defined donor/acceptor ratio. A theoretical simulation, assuming random mixing and association among protein subunits in a ring-shaped homo-oligomer, was used to determine the dependence of FET on the number of subunits, the distance between labeled sites on different subunits, and the fraction of subunits remaining monomeric. By measuring FET as a function of the donor/acceptor ratio, the above parameters of the oligomeric structure can be resolved over a substantial range of their values. We used this approach to investigate the oligomeric structure of phospholamban (PLB), a 52-amino acid protein in cardiac sarcoplasmic reticulum (SR). Phosphorylation of PLB regulates the SR Ca-ATPase. Because PLB exists primarily as a homopentamer on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, this hypothesis must be tested by determining directly the oligomeric structure of PLB in the lipid membrane. To accomplish this goal, PLB was labeled at Lys-3 in the cytoplasmic domain, with two different amine-reactive donor/acceptor pairs, which gave very similar FET results. In detergent solutions, FET was not observed unless the sample was first boiled to facilitate subunit mixing. In lipid bilayers, FET was observed at 25 degrees C without boiling, indicating a dynamic equilibrium among PLB subunits in the membrane. Analysis of the FET data indicated that the dye-labeled PLB is predominantly in oligomers having at least 8 subunits, that 7-23% of the PLB subunits are monomeric, and that the distance between dyes on adjacent PLB subunits is about 10 A. A point mutation of PLB (L37A) that runs as monomer on SDS-PAGE showed no energy transfer, confirming its monomeric state in the membrane. We conclude that FET is a powerful approach for analyzing the oligomeric structure of PLB, and this method is applicable to other oligomeric proteins.

Full Text

The Full Text of this article is available as a PDF (184.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair B. D., Engelman D. M. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry. 1994 May 10;33(18):5539–5544. doi: 10.1021/bi00184a024. [DOI] [PubMed] [Google Scholar]
  2. Arkin I. T., Adams P. D., MacKenzie K. R., Lemmon M. A., Brünger A. T., Engelman D. M. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel. EMBO J. 1994 Oct 17;13(20):4757–4764. doi: 10.1002/j.1460-2075.1994.tb06801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Autry J. M., Jones L. R. Functional Co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation. J Biol Chem. 1997 Jun 20;272(25):15872–15880. doi: 10.1074/jbc.272.25.15872. [DOI] [PubMed] [Google Scholar]
  4. Colyer J. Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phospholamban? Cardiovasc Res. 1993 Oct;27(10):1766–1771. doi: 10.1093/cvr/27.10.1766. [DOI] [PubMed] [Google Scholar]
  5. Cornea R. L., Jones L. R., Autry J. M., Thomas D. D. Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Biochemistry. 1997 Mar 11;36(10):2960–2967. doi: 10.1021/bi961955q. [DOI] [PubMed] [Google Scholar]
  6. Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem. 1997 Jun 13;272(24):15061–15064. doi: 10.1074/jbc.272.24.15061. [DOI] [PubMed] [Google Scholar]
  7. Kovacs R. J., Nelson M. T., Simmerman H. K., Jones L. R. Phospholamban forms Ca2+-selective channels in lipid bilayers. J Biol Chem. 1988 Dec 5;263(34):18364–18368. [PubMed] [Google Scholar]
  8. Li M., Cornea R. L., Autry J. M., Jones L. R., Thomas D. D. Phosphorylation-induced structural change in phospholamban and its mutants, detected by intrinsic fluorescence. Biochemistry. 1998 May 26;37(21):7869–7877. doi: 10.1021/bi9801053. [DOI] [PubMed] [Google Scholar]
  9. Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem. 1983 Jan 10;258(1):464–471. [PubMed] [Google Scholar]
  10. Luo W., Grupp I. L., Harrer J., Ponniah S., Grupp G., Duffy J. J., Doetschman T., Kranias E. G. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994 Sep;75(3):401–409. doi: 10.1161/01.res.75.3.401. [DOI] [PubMed] [Google Scholar]
  11. McCallum G. J., Woodward R. N. Cadmium-109 in New Zealand rainwater. Nature. 1966 Jan 1;209(5018):69–70. doi: 10.1038/209069b0. [DOI] [PubMed] [Google Scholar]
  12. Moens P. D., Yee D. J., dos Remedios C. G. Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: effect of phalloidin on polymer assembly. Biochemistry. 1994 Nov 8;33(44):13102–13108. doi: 10.1021/bi00248a020. [DOI] [PubMed] [Google Scholar]
  13. Reddy L. G., Jones L. R., Cala S. E., O'Brian J. J., Tatulian S. A., Stokes D. L. Functional reconstitution of recombinant phospholamban with rabbit skeletal Ca(2+)-ATPase. J Biol Chem. 1995 Apr 21;270(16):9390–9397. doi: 10.1074/jbc.270.16.9390. [DOI] [PubMed] [Google Scholar]
  14. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  15. Simmerman H. K., Jones L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998 Oct;78(4):921–947. doi: 10.1152/physrev.1998.78.4.921. [DOI] [PubMed] [Google Scholar]
  16. Simmerman H. K., Kobayashi Y. M., Autry J. M., Jones L. R. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem. 1996 Mar 8;271(10):5941–5946. doi: 10.1074/jbc.271.10.5941. [DOI] [PubMed] [Google Scholar]
  17. Vanderkooi J. M., Ierokomas A., Nakamura H., Martonosi A. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry. 1977 Apr 5;16(7):1262–1267. doi: 10.1021/bi00626a003. [DOI] [PubMed] [Google Scholar]
  18. Veatch W., Stryer L. The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol. 1977 Jun 15;113(1):89–102. doi: 10.1016/0022-2836(77)90042-0. [DOI] [PubMed] [Google Scholar]
  19. Watanabe Y., Kijima Y., Kadoma M., Tada M., Takagi T. Molecular weight determination of phospholamban oligomer in the presence of sodium dodecyl sulfate: application of low-angle laser light scattering photometry. J Biochem. 1991 Jul;110(1):40–45. doi: 10.1093/oxfordjournals.jbchem.a123540. [DOI] [PubMed] [Google Scholar]
  20. Wegener A. D., Jones L. R. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. J Biol Chem. 1984 Feb 10;259(3):1834–1841. [PubMed] [Google Scholar]
  21. Wegener A. D., Simmerman H. K., Lindemann J. P., Jones L. R. Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem. 1989 Jul 5;264(19):11468–11474. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES